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New midpoint and trapezoidal-type inequalities
for prequasiinvex functions via generalized
fractional integrals

Seth Kermausuor and Eze R. Nwaeze

Abstract. In this work, we establish some new midpoint and trapezoidal type
inequalities for prequasiinvex functions via the Katugampola fractional integrals.
Some of the results obtained in this paper are generalizations of some earlier
results in the literature.

Mathematics Subject Classification (2010): 26A33, 26A51, 26D10, 26D15.

Keywords: Hermite-Hadamard inequality, midpoint-type inequalities,
trapezoidal-type inequalities, quasi-convex functions, prequasiinvex func-
tions, Hölder’s inequality, power mean inequality, Katugampola fractional
integrals, Riemann-Liouville fractional integrals, Hadamard fractional integrals.

1. Introduction

A function f : [a, b]→ R is said to be convex on [a, b] if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ [a, b] and t ∈ [0, 1] (see [26, 28]). The following result which holds for
convex functions is known in the literature as the Hermite-Hadamard inequality.

Theorem 1.1 ([10]). If f : [a, b]→ R is convex on [a, b] with a < b, then

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Many authors have studied and generalized the Hermite-Hadamard inequality in
several ways via different classes of convex functions. For some recent results related
to the Hermite-Hadamard inequality, we refer the interested reader to the papers
[1, 22, 23, 13, 20, 21, 4, 9, 3, 2, 18, 19].

Received 12 January 2020; Accepted 14 June 2021.
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The concept of quasi-convexity which generalizes the concept of convexity is
defined as follows.

Definition 1.2 (See [26, 28]). A function f : [a, b] → R is said to be quasi-convex on
[a, b] if

f(tx+ (1− t)y) ≤ max{f(x), f(y)}
for all x, y ∈ [a, b] and t ∈ [0, 1].

In [12], Ion introduced the following Hermite-Hadamard type inequalities also
known as trapezoidal-type inequalities for quasi-convex functions as follows.

Theorem 1.3. Let f : [a, b]→ R be a differentiable function on (a, b). If |f ′| is quasi-
convex on [a, b], then the following inequality holds:∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

max{|f ′(a)|, |f ′(b)|}.

Theorem 1.4. Let f : [a, b]→ R be a differentiable function on (a, b). If |f ′|
p
p−1 , p > 1

is quasi-convex on [a, b], then the following inequality holds:∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
2(p+ 1)1/p

(
max

{
|f ′(a)|

p
p−1 , |f ′(b)|

p
p−1

}) p−1
p

.

For more results related to quasi-convex functions, we refer the interested reader
to the papers [9, 3, 1, 2]. The concept of preinvexity was introduced in [5, 11, 32] as
a generalization of convexity as follows.

Definition 1.5. Let I ⊆ R and η : I × I → R be a bifunction. I is said to be an invex
set with respect to η, if

x+ tη(y, x) ∈ I for all x, y ∈ I and t ∈ [0, 1].

If I ⊆ R is an invex set with respect to the bifunction η, then a function f : I → R is
said to be a preinvex function with respect to η, if

f(x+ tη(y, x)) ≤ (1− t)f(x) + tf(y) for all x, y ∈ I and t ∈ [0, 1].

Remark 1.6. If η(y, x) = y − x in Definition 1.5, then we have that f is a convex
function. Thus, every convex function is a preinvex function with respect to the bi-
function η(y, x) = y − x. However, not every preinvex function is a convex function
(see [32] for more details).

In a similar way, the concept of quasi-convexity has been generalized in the
following definition.

Definition 1.7 ([24]). If I ⊆ R is an invex set with respect to the bifunction η, then a
function f : I → R is said to be prequasiinvex with respect to η, if

f(x+ tη(y, x)) ≤ max{f(x), f(y)} for all x, y ∈ I and t ∈ [0, 1].

Remark 1.8. Every quasi-convex function is a prequasiinvex function with respect
to the bifunction η(y, x) = y − x. However, not every prequasinvex function is a
quasi-convex function (see [33] for more details).
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Barani et al. [4] established the following trapezoidal-type inequalities for pre-
quasiinvex functions which are generalizations of Theorem 1.3 and Theorem 1.4.

Theorem 1.9. Let A ⊆ R be an open invex subset with respect to η : A × A → R.
Suppose that f : A→ R is a differentiable function. If |f ′| is prequasiinvex on A, then
for every a, b ∈ A the following inequality holds:∣∣∣∣∣f(a) + f(a+ η(b, a))

2
− 1

η(b, a)

∫ a+η(b,a)

a

f(x)dx

∣∣∣∣∣ ≤ |η(b, a)|
4

max{|f ′(a)|, |f ′(b)|}.

Theorem 1.10. Let A ⊆ R be an open invex subset with respect to η : A × A → R.

Suppose that f : A→ R is a differentiable function. If |f ′|
p
p−1 is prequasiinvex on A,

then for every a, b ∈ A the following inequality holds:∣∣∣∣∣f(a) + f(a+ η(b, a))

2
− 1

η(b, a)

∫ a+η(b,a)

a

f(x)dx

∣∣∣∣∣
≤ |η(b, a)|

2(p+ 1)1/p

(
max

{
|f ′(a)|

p
p−1 , |f ′(b)|

p
p−1

}) p−1
p

.

For more information and results related to prequasiinvex functions, we refer
the interested reader to the papers [24, 33, 13, 20, 21]. In [13], the author generalized
Theorem 1.9 and Theorem 1.10 using the Riemann-Liouville fractional integrals.

Our goal in this paper is to provide some midpoint and trapizoidal type in-
equalities for functions whose derivative in absolute value to some exponents are pre-
quasiinvex via the Katugampola fractional integrals. Some of our results generalize
the results in [13]. We end this section with the definitions of the Riemann-Liouville,
Hadamard and Katugampola fractional integrals and some preliminary results.

Definition 1.11 ([25]). The left- and right-sided Riemann-Liouville fractional integrals
of order α > 0 of f are defined by

Jαa+f(x) :=
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt

and

Jαb−f(x) :=
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt

with a < x < b and Γ(·) is the gamma function given by

Γ(x) :=

∫ ∞
0

tx−1e−tdt, Re(x) > 0

with the property that Γ(x+ 1) = xΓ(x).

Definition 1.12 ([29]). The left- and right-sided Hadamard fractional integrals of order
α > 0 of f are defined by

Hα
a+f(x) :=

1

Γ(α)

∫ x

a

(
ln
x

t

)α−1 f(t)

t
dt
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and

Hα
b−f(x) :=

1

Γ(α)

∫ b

x

(
ln
t

x

)α−1
f(t)

t
dt.

Definition 1.13. Xp
c (a, b) (c ∈ R, 1 ≤ p ≤ ∞) denotes the space of all complex-valued

Lebesgue measurable functions f for which ‖f‖Xpc < ∞, where the norm ‖ · ‖Xpc is
defined by

‖f‖Xpc =

(∫ b

a

|tcf(t)|p dt
t

)1/p

(1 ≤ p <∞)

and for p =∞

‖f‖X∞c = ess sup
a≤t≤b

|tcf(t)|.

In 2011, Katugampola [14] introduced a new fractional integral operator which
generalizes the Riemann-Liouville and Hadamard fractional integrals as follows:

Definition 1.14. Let [a, b] ⊂ R be a finite interval. Then, the left- and right-sided
Katugampola fractional integrals of order α > 0 of f ∈ Xp

c (a, b) are defined by

ρIαa+f(x) :=
ρ1−α

Γ(α)

∫ x

a

tρ−1

(xρ − tρ)1−α
f(t)dt

and

ρIαb−f(x) :=
ρ1−α

Γ(α)

∫ b

x

tρ−1

(tρ − xρ)1−α
f(t)dt

with a < x < b and ρ > 0, if the integrals exist.

Remark 1.15. It is shown in [14] that the Katugampola fractional integral operators
are well-defined on Xp

c (a, b).

Theorem 1.16 ([14]). Let α > 0 and ρ > 0. Then for x > a

1. lim
ρ→1

ρIαa+f(x) = Jαa+f(x),

2. lim
ρ→0+

ρIαa+f(x) = Hα
a+f(x).

Similar results also hold for the right-sided operators.

For more information about the Katugampola fractional integrals and related
results, we refer the interested reader to the papers [6, 14, 15, 16, 17].

Lemma 1.17 (See [27, 31]). For any α ∈ [0, 1] and x, y ∈ [0, 1], we have

|xα − yα| ≤ |x− y|α.
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2. Main results

2.1. Midpoint-type inequalities

The following lemma is a generalization of [7, Lemma 16] via the Katugampola
fractional integrals.

Lemma 2.1. Let α, ρ > 0, I ⊆ R be an open invex set with respect to the bifunction
η : I × I → R and f : I → R be a differentiable mapping on I. If a, b > 0 with

a < b such that aρ, bρ ∈ I, η(bρ, aρ) > 0 and f ′ ∈ L1

(
[aρ, aρ + η(bρ, aρ)]

)
, then the

following equality via the fractional integrals holds:

f

(
2aρ + η(bρ, aρ)

2

)
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIαa+f(aρ + η(bρ, aρ))

+ ρIα(
ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

]
=
η(bρ, aρ)ρ

2

(
I1 + I2 + I3 + I4

)
, (2.1)

where

I1 =

∫ ρ
√

1/2

0

t(α+1)ρ−1f ′(aρ + tρη(bρ, aρ))dt,

I2 = −
∫ ρ
√

1/2

0

t(α+1)ρ−1f ′(aρ + (1− tρ)η(bρ, aρ))dt,

I3 =

∫ 1

ρ
√

1/2

(tαρ − 1)tρ−1f ′(aρ + tρη(bρ, aρ))dt

and

I4 =

∫ 1

ρ
√

1/2

(1− tαρ)tρ−1f ′(aρ + (1− tρ)η(bρ, aρ))dt.

Proof. By integrating by parts, we have

I1 =

∫ ρ
√

1/2

0

t(α+1)ρ−1f ′(aρ + tρη(bρ, aρ))dt

=
tαρ

(bρ − aρ)ρ
f(aρ + tρη(bρ, aρ))

∣∣∣∣ ρ
√

1/2

0

− α

η(bρ, aρ)

∫ ρ
√

1/2

0

tαρ−1f(aρ + tρη(bρ, aρ))dt

=
2−α

η(bρ, aρ)ρ
f

(
2aρ + η(bρ, aρ)

2

)
− α

η(bρ, aρ)

∫ ρ
√

1/2

0

tαρ−1f(aρ + tρη(bρ, aρ))dt. (2.2)
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Similarly, we have

I2 =
2−α

η(bρ, aρ)ρ
f

(
2aρ + η(bρ, aρ)

2

)
− α

η(bρ, aρ)

∫ ρ
√

1/2

0

tαρ−1f(aρ + (1− tρ)η(bρ, aρ))dt, (2.3)

I3 =

∫ 1

ρ
√

1/2

(tαρ − 1)tρ−1f ′(aρ + tρη(bρ, aρ))dt

=
tαρ − 1

η(bρ, aρ)ρ
f(aρ + tρη(bρ, aρ))

∣∣∣∣1
ρ
√

1/2

− α

η(bρ, aρ)

∫ 1

ρ
√

1/2

tαρ−1f(aρ + tρη(bρ, aρ))dt

=
1− 2−α

η(bρ, aρ)ρ
f

(
2aρ + η(bρ, aρ)

2

)
− α

η(bρ, aρ)

∫ 1

ρ
√

1/2

tαρ−1f(aρ + tρη(bρ, aρ))dt (2.4)

and

I4 =
1− 2−α

η(bρ, aρ)ρ
f

(
2aρ + η(bρ, aρ)

2

)
− α

η(bρ, aρ)

∫ 1

ρ
√

1/2

tαρ−1f(aρ + (1− tρ)η(bρ, aρ))dt. (2.5)

Now, by using (2.2), (2.3), (2.4) and (2.5), we have

2

η(bρ, aρ)ρ
f

(
2aρ + η(bρ, aρ)

2

)
− α

η(bρ, aρ)

[ ∫ 1

0

tαρ−1f(aρ + tρη(bρ, aρ))dt

+

∫ 1

0

tαρ−1f(aρ + (1− tρ)η(bρ, aρ))dt

]
= I1 + I2 + I3 + I4. (2.6)

By using change of variables and Definition 1.14, we have∫ 1

0

tαρ−1f(aρ + tρη(bρ, aρ))dt =
ρα−1Γ(α)

η(bρ, aρ)α
ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ) (2.7)

and ∫ 1

0

tαρ−1f(aρ + (1− tρ)η(bρ, aρ))dt =
ρα−1Γ(α)

η(bρ, aρ)α
ρIαa+f(aρ + η(bρ, aρ)). (2.8)
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Substituting (2.7) and (2.8) in (2.6), we obtain

I1 + I2 + I3 + I4 =
2

η(bρ, aρ)ρ
f

(
2aρ + η(bρ, aρ)

2

)
− ρα−1Γ(α+ 1)

η(bρ, aρ)α+1

×
[
ρIαa+f(aρ + η(bρ, aρ)) + ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

]
. (2.9)

The desired identity in (2.1) follows from (2.9). Hence, the proof is complete. �

Remark 2.2. If we choose ρ = 1 in Lemma 2.1, then we obtain [7, Lemma 16]. Also,
if ρ 6= 1 and η(x, y) = x − y in Lemma 2.1, then we obtain [8, Lemma 2.1] with a
minor mistake in the identities obtained in [8] where Γ(α+ 1) should have been Γ(α)
instead.

Theorem 2.3. Under the conditions of Lemma 2.1, if |f ′|q, q ≥ 1 is prequasiinvex on
I, then the following inequality holds:∣∣∣∣f (2aρ + η(bρ, aρ)

2

)
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIαa+f(aρ + η(bρ, aρ))

+ ρIα(
ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

]∣∣∣∣
≤ η(bρ, aρ)

(1

2
− 1

α+ 1
+

1

2α(α+ 1)

)(
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
.

Proof. By using Lemma 2.1 and the properties of the absolute value, we have∣∣∣∣f (2aρ + η(bρ, aρ)

2

)
− ραΓ(α+ 1)

2η1(bρ, aρ)α

[
ρIαa+f(aρ + η(bρ, aρ))

+ ρIα(
ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

]∣∣∣∣
≤ η(bρ, aρ)ρ

2

(
|I1|+ |I2|+ |I3|+ |I4|

)
. (2.10)

By using the power mean inequality, we have

|I1| ≤

(∫ ρ
√

1/2

0

t(α+1)ρ−1dt

)1−1/q (∫ ρ
√

1/2

0

t(α+1)ρ−1|f ′(aρ + tρη(bρ, aρ))|qdt

)1/q

.

(2.11)

Using the prequasiinvexity of |f ′|q, we have

|f ′(aρ + tρη(bρ, aρ))|q ≤ max
{
|f ′(aρ)|q, |f ′(bρ)|q

}
. (2.12)

Substituting (2.12) in (2.11), we obtain

|I1| ≤
1

2α+1(α+ 1)ρ

(
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
. (2.13)
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Using similar arguments, we deduce that

|I2| ≤
1

2α+1(α+ 1)ρ

(
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
, (2.14)

|I3| ≤
∫ 1

ρ
√

1/2

|tαρ − 1|tρ−1dt
(

max
{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
=

1

ρ

∫ 1

1/2

(1− uα)du
(

max
{
|f ′(aρ)|q, |f ′(bρ)|q

)})1/q
=

1

ρ

(1

2
− 1

α+ 1
+

1

2α+1(α+ 1)

)(
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
(2.15)

and

|I4| ≤
1

ρ

(1

2
− 1

α+ 1
+

1

2α+1(α+ 1)

)(
max

{
|f ′(aρ)|q, |f ′(bρ)|q

)})1/q
. (2.16)

The desired inequality follows from (2.10) by using (2.11)-(2.12). �

Corollary 2.4. If in Theorem 2.3 we take η(x, y) = x−y for all x, y ∈ I, i.e, |f ′|q, q ≥ 1,
is quasiconvex, then the following inequality holds:∣∣∣∣f (aρ + bρ

2

)
− ραΓ(α+ 1)

2(bρ − aρ)α

[
ρIαa+f(bρ) + ρIαb−f(aρ)

]∣∣∣∣
≤ (bρ − aρ)

(1

2
− 1

α+ 1
+

1

2α(α+ 1)

)(
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
.

Remark 2.5. It is worth noting that in [8, Theorem 2.8] the authors established an-
other estimate for the left hand side of the inequality in Corollary 2.4 under the
condition that |f ′| is convex. On the other hand, since every convex function is qua-
siconvex it follows that the inequality in Corollary 2.4 holds if |f ′|q, q ≥ 1 is convex.

Theorem 2.6. Under the conditions of Lemma 2.1, if |f ′|q, q > 1 is prequasiinvex on
I, then the following inequality holds:∣∣∣∣f (2aρ + η(bρ, aρ)

2

)
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIαa+f(aρ + η(bρ, aρ))

+ ρIα(
ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

]∣∣∣∣
≤ η(bρ, aρ)

2

[(
1

2αr(αr + 1)

)1/r

+

(
2

∫ 1

1/2

|uα − 1|rdu

)1/r ]
×
(

max
{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
, (2.17)
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where
1

r
+

1

q
= 1. In addition, if α ∈ (0, 1], then we have the inequality∣∣∣∣f (2aρ + η(bρ, aρ)

2

)
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIαa+f(aρ + η(bρ, aρ))

+ ρIα(
ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

]∣∣∣∣
≤ η(bρ, aρ)

(
1

2αr(αr + 1)

)1/r (
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
. (2.18)

Proof. By using Lemma 2.1 and the properties of the absolute value, we have∣∣∣∣f (2aρ + η(bρ, aρ)

2

)
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIαa+f(aρ + η(bρ, aρ))

+ ρIα(
ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

]∣∣∣∣
≤ η(bρ, aρ)ρ

2

(
|I1|+ |I2|+ |I3|+ |I4|

)
. (2.19)

By using the Hölder’s inequality, we have

|I1| ≤

(∫ ρ
√

1/2

0

tαρrtρ−1dt

)1/r (∫ ρ
√

1/2

0

tρ−1|f ′(aρ + tρη(bρ, aρ))|qdt

)1/q

. (2.20)

Using the prequasiinvexity of |f ′|q, we have

|f ′(aρ + tρη(bρ, aρ))|q ≤ max
{
|f ′(aρ)|q, |f ′(bρ)|q

}
. (2.21)

Substituting (2.21) in (2.20), we obtain

|I1| ≤
(

1

2αr+1(αr + 1)ρ

)1/r (
1

2ρ
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q

=
1

2ρ

(
1

2αr(αr + 1)

)1/r (
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
. (2.22)

Using similar arguments, we deduce that

|I2| ≤
1

2ρ

(
1

2αr(αr + 1)

)1/r (
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
, (2.23)

|I3| ≤

(∫ 1

ρ
√

1/2

|tαρ − 1|rtρ−1dt

)1/r (
max

{
|f ′(aρ)|q, |f ′(bρ)|q

}∫ 1

ρ
√

1/2

tρ−1dt

)1/q

=

(
1

ρ

∫ 1

1/2

|uα − 1|rdu

)1/r (
1

2ρ
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q

=
1

2ρ

(
2

∫ 1

1/2

|uα − 1|rdu

)1/r (
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
(2.24)
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and

|I4| ≤
1

2ρ

(
2

∫ 1

1/2

|uα − 1|rdu

)1/r (
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
. (2.25)

The inequality in (2.17) follows from (2.19) by using (2.20)-(2.21). Now, if α ∈ (0, 1],
then it follows from Lemma 1.17 that∫ 1

1/2

|uα − 1|rdu ≤
∫ 1

1/2

(1− u)αrdu =
1

2αr+1(αr + 1)
. (2.26)

The inequality in (2.18) follows from (2.17) by using (2.26). Hence, the proof is com-
plete. �

Corollary 2.7. If in Theorem 2.6 we take η(x, y) = x−y for all x, y ∈ I, i.e, |f ′|q, q > 1,
is quasiconvex, then the following inequality holds:∣∣∣∣f (aρ + bρ

2

)
− ραΓ(α+ 1)

2(bρ − aρ)α

[
ρIαa+f(bρ) + ρIαb−f(aρ)

]∣∣∣∣
≤ bρ − aρ

2

[(
1

2αr(αr + 1)

)1/r

+

(
2

∫ 1

1/2

|uα − 1|rdu

)1/r ]
×
(

max
{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
,

where
1

r
+

1

q
= 1. In addition, if α ∈ (0, 1], then we have the inequality∣∣∣∣f (aρ + bρ

2

)
− ραΓ(α+ 1)

2(bρ − aρ)α

[
ρIαa+f(bρ) + ρIαb−f(aρ)

]∣∣∣∣
≤ (bρ − aρ)

(
1

2αr(αr + 1)

)1/r (
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
.

2.2. Trapezoidal-type inequalities

The following lemma is a generalization of Lemma 2.4 in [6] for the invex case.

Lemma 2.8. Let α, ρ > 0, I ⊆ R be an open invex set with respect to the bifunction
η : I × I → R and f : I → R be a differentiable mapping on I. If a, b > 0 with

a < b such that aρ, bρ ∈ I, η(bρ, aρ) > 0 and f ′ ∈ L1

(
[aρ, aρ + η(bρ, aρ)]

)
, then the

following equality via the fractional integrals holds:

f(aρ) + f(aρ + η(bρ, aρ))

2
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

+ ρIαa+f(aρ + η(bρ, aρ))

]
=
η(bρ, aρ)ρ

2

∫ 1

0

[(1− tρ)α − tρα]tρ−1f ′(aρ + (1− tρ)η(bρ, aρ))dt. (2.27)
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Proof. We observe that∫ 1

0

[(1− tρ)α − tρα]tρ−1f ′(aρ + (1− tρ)η(bρ, aρ))dt = I1 − I2,

where

I1 =

∫ 1

0

(1− tρ)αtρ−1f ′(aρ + (1− tρ)η(bρ, aρ))dt

and

I2 =

∫ 1

0

tαρtρ−1f ′(aρ + (1− tρ)η(bρ, aρ))dt.

By integrating by parts and change of variables, we have

I1 =

∫ 1

0

(1− tρ)αtρ−1f ′(aρ + (1− tρ)η(bρ, aρ))dt

= − (1− tρ)α

η(bρ, aρ)ρ
f(aρ + (1− tρ)η(bρ, aρ))

∣∣∣∣1
0

− α

η(bρ, aρ)

∫ 1

0

(1− tρ)α−1tρ−1f(aρ + (1− tρ)η(bρ, aρ))dt

=
1

η(bρ, aρ)ρ
f(aρ + η(bρ, aρ))

− α

η(bρ, aρ)

∫ 1

0

(1− tρ)α−1tρ−1f(aρ + (1− tρ)η(bρ, aρ))dt

=
1

η(bρ, aρ)ρ
f(aρ + η(bρ, aρ))

− α

η(bρ, aρ)α+1

ρ
√
aρ+η(bρ,aρ)∫
a

(uρ − aρ)α−1uρ−1f(uρ)du. (2.28)

By using Definition 1.14 and (2.28), we have

I1 =
f(aρ + η(bρ, aρ))

η(bρ, aρ)ρ
− ρα−1Γ(α+ 1)

η(bρ, aρ)α+1
ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ). (2.29)

By a similar argument, we have

I2 = − f(aρ)

η(bρ, aρ)ρ
+
ρα−1Γ(α+ 1)

η(bρ, aρ)α+1
ρIαa+f(aρ + η(bρ, aρ)). (2.30)

By using (2.29) and (2.30), we have

I1 − I2 =
f(aρ) + f(aρ + η(bρ, aρ))

η(bρ, aρ)ρ
− ρα−1Γ(α+ 1)

η(bρ, aρ)α+1

[
ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

+ ρIαa+f(aρ + η(bρ, aρ))

]
. (2.31)

The desired identity in (2.27) follows from (2.31). �
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Remark 2.9. If η(x, y) = x − y in Lemma 2.8, then we obtain [6, Lemma 2.4] with
minor mistakes in the identity obtained in [6] where Γ(α+ 1) should have been Γ(α)

and
bρ − aρ

2
should have been

(bρ − aρ)ρ
2

instead.

Theorem 2.10. Under the conditions of Lemma 2.8, if |f ′|q, q ≥ 1 is prequasiinvex on
I, then the following inequality holds:∣∣∣∣f(aρ) + f(aρ + η(bρ, aρ))

2
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

+ ρIαa+f(aρ + η(bρ, aρ))

]∣∣∣∣
≤ η(bρ, aρ)

α+ 1

(
1− 1

2α

)(
max

{
|f ′(aρ)|q, |f ′(bρ)|q

)})1/q
. (2.32)

Proof. Using Lemma 2.8, the power mean inequality and the prequasiinvexity of |f ′|q,
we have∣∣∣∣f(aρ) + f(aρ + η(bρ, aρ))

2
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

+ ρIαa+f(aρ + η(bρ, aρ))

]∣∣∣∣
≤ η(bρ, aρ)ρ

2

(∫ 1

0

∣∣∣(1− tρ)α − tρα∣∣∣tρ−1dt)1−1/q

×
(∫ 1

0

∣∣∣(1− tρ)α − tρα∣∣∣tρ−1∣∣∣f ′(aρ + (1− tρ)η(bρ, aρ))
∣∣∣qdt)1/q

≤ η(bρ, aρ)ρ

2

(∫ 1

0

∣∣∣(1− tρ)α − tρα∣∣∣tρ−1dt)(max
{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
=
η(bρ, aρ)ρ

2

(
1

ρ

∫ 1

0

∣∣∣(1− u)α − uα
∣∣∣du)(max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
. (2.33)

Now, we observe that∫ 1

0

∣∣∣(1− u)α − uα
∣∣∣du =

∫ 1/2

0

(
(1− u)α − uα

)
du+

∫ 1

1/2

(
uα − (1− u)α

)
du

=
1

α+ 1
− 1

2α(α+ 1)
+

1

α+ 1
− 1

2α(α+ 1)

=
2

α+ 1

(
1− 1

2α

)
. (2.34)

The inequality in (2.32) follows from (2.33) and (2.34). �

Remark 2.11. If η(x, y) = x − y in Theorem 2.10, then we recover the result in [30,
Theorem 2.4]. Also, if ρ = 1 in Theorem 2.10, then we obtain the result in [13,
Theorem 2.3].
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Theorem 2.12. Under the conditions of Lemma 2.8, if |f ′|q, q > 1 is prequasiinvex on
I, then the following inequality holds:

∣∣∣∣f(aρ) + f(aρ + η(bρ, aρ))

2
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

+ ρIαa+f(aρ + η(bρ, aρ))

]∣∣∣∣
≤ η(bρ, aρ)

2

(∫ 1

0

∣∣∣(1− u)α − uα
∣∣∣rdu)1/r (

max
{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
, (2.35)

where
1

r
+

1

q
= 1. In addition, if α ∈ (0, 1], then we have the inequality

∣∣∣∣f(aρ) + f(aρ + η(bρ, aρ))

2
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

+ ρIαa+f(aρ + η(bρ, aρ))

]∣∣∣∣
≤ η(bρ, aρ)

2

(
1

αr + 1

)1/r (
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
. (2.36)

Proof. Using Lemma 2.8, the Hölder’s inequality and the prequasiinvexity of |f ′|q, we
have

∣∣∣∣f(aρ) + f(aρ + η(bρ, aρ))

2
− ραΓ(α+ 1)

2η(bρ, aρ)α

[
ρIα(

ρ
√
aρ+η(bρ,aρ)

)
−
f(aρ)

+ ρIαa+f(aρ + η(bρ, aρ))

]∣∣∣∣
≤ η(bρ, aρ)ρ

2

(∫ 1

0

∣∣∣(1− tρ)α − tρα∣∣∣rtρ−1dt)1/r

×
(∫ 1

0

tρ−1
∣∣∣f ′(aρ + (1− tρ)η(bρ, aρ))

∣∣∣qdt)1/q

≤ η(bρ, aρ)ρ

2

(
1

ρ

∫ 1

0

∣∣∣(1− u)α − uα
∣∣∣rdu)1/r (

1

ρ
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q

=
η(bρ, aρ)

2

(∫ 1

0

∣∣∣(1− u)α − uα
∣∣∣rdu)1/r (

max
{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
.
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This proves the inequality in (2.35). By using Lemma 1.17 with α ∈ (0, 1], we deduce
that ∫ 1

0

∣∣∣(1− u)α − uα
∣∣∣rdu ≤ ∫ 1

0

∣∣∣1− 2u
∣∣∣αrdu

=

∫ 1/2

0

(1− 2u)αrdu+

∫ 1

1/2

(2u− 1)αrdu

=
1

2(αr + 1)
+

1

2(αr + 1)

=
1

αr + 1
. (2.37)

The inequality in (2.36) follows from (2.35) and (2.37). �

Remark 2.13. If ρ = 1 in the inequality (2.36) in Theorem 2.12, then we obtain the
result in [13, Theorem 2.4].

Corollary 2.14. If in Theorem 2.12 we take η(x, y) = x − y for all x, y ∈ I, i.e,
|f ′|q, q > 1, is quasiconvex, then the following inequality holds:∣∣∣∣f(aρ) + f(bρ)

2
− ραΓ(α+ 1)

2(bρ − aρ)α

[
ρIαb−f(aρ) + ρIαa+f(bρ)

]∣∣∣∣
≤ bρ − aρ

2

(∫ 1

0

∣∣∣(1− u)α − uα
∣∣∣rdu)1/r (

max
{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
,

where
1

r
+

1

q
= 1. In addition, if α ∈ (0, 1], then we have the inequality∣∣∣∣f(aρ) + f(bρ)

2
− ραΓ(α+ 1)

2(bρ − aρ)α

[
ρIαb−f(aρ) + ρIαa+f(aρ + η(bρ, aρ))

]∣∣∣∣
≤ bρ − aρ

2

(
1

αr + 1

)1/r (
max

{
|f ′(aρ)|q, |f ′(bρ)|q

})1/q
.

3. Conclusion

We established two midpoint-type inequalities and two trapezoidal-type inequal-
ities for functions whose derivatives in absolute value to some powers are prequasiinvex
with respect to a bifunction η via the Katugampola fractional integral operators. By
considering the bifunction η(x, y) = x − y, the results for quasiconvex functions has
been obtained from our main results. Several other results can be obtained from our
results by considering different bifunctions and/or different values of the parameters
involved. In particular, if we take ρ = 1, then our results are in terms of the Riemann-
Liouville fractional integrals. Also, we hope that under certain conditions on f and η,
similar results via the Hadamard fractional integrals could be derived from our results
by taking the limit as ρ→ 0+. The details are left for the interested reader.
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1. Introduction

Fractional differential equations have recently been applied in various areas of
engineering, mathematics, physics, and other applied sciences [27]. For some funda-
mental results in the theory of fractional calculus and fractional differential equations
we refer the reader to the monographs [1, 2, 3, 20, 26, 30], the papers [21, 22, 29] and
the references therein. Recently, considerable attention has been given to the existence
of solutions of initial and boundary value problems for fractional differential equations
and inclusions with Caputo fractional derivative; [2, 19]. Implicit fractional differen-
tial equations were analyzed by many authors; see, for instance [1, 2, 4, 12, 13, 14]
and the references therein.

Fractional q-difference equations were initiated at the beginning of the 19th
century [5, 15], and received significant attention in recent years. Some interesting
details about initial and boundary value problems of q-difference and fractional q-
difference equations can be found in [7, 8, 16, 17] and references therein.

Recently, in [3], the authors applied the measure of noncompactness to some
classes of functional Riemann–Liouville or Caputo fractional differential equations in
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Banach spaces. Motivated by the above papers, we discuss the existence of solutions
for the following implicit fractional q-difference equation

(CDα
q u)(t) = f(t, u(t), (CDα

q u)(t)), t ∈ I := [0, T ], (1.1)

with the initial condition
u(0) = u0, (1.2)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × E × E → E is a given function, E is a
real (or complex) Banach space with norm ‖ · ‖, and CDα

q is the Caputo fractional
q-difference derivative of order α.

This paper initiates the study of implicite fractional q-difference equations on
Banach spaces.

2. Preliminaries

Consider the Banach space C(I) := C(I, E) of continuous functions from I into
E equipped with the usual supremum (uniform) norm

‖u‖∞ := sup
t∈I
‖u(t)‖.

As usual, L1(I) denotes the space of measurable functions v : I → E which are
Bochner integrable with the norm

‖v‖1 =

∫ T

0

‖v(t)‖dt.

Let us recall some definitions and properties of fractional q-calculus. For a ∈ R, we
set

[a]q =
1− qa

1− q
.

The q-analogue of the power (a− b)n is

(a− b)(0) = 1, (a− b)(n) = Πn−1
k=0(a− bqk); a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aαΠ∞k=0

(
a− bqk

a− bqk+α

)
; a, b, α ∈ R.

Definition 2.1. [18] The q-gamma function is defined by

Γq(ξ) =
(1− q)(ξ−1)

(1− q)ξ−1
; ξ ∈ R− {0,−1,−2, ...}

Notice that the q-gamma function satisfies Γq(1 + ξ) = [ξ]qΓq(ξ).

Definition 2.2. [18] The q-derivative of order n ∈ N of a function u : I → E is defined
by (D0

qu)(t) = u(t),

(Dqu)(t) := (D1
qu)(t) =

u(t)− u(qt)

(1− q)t
; t 6= 0, (Dqu)(0) = lim

t→0
(Dqu)(t),

and
(Dn

q u)(t) = (DqD
n−1
q u)(t); t ∈ I, n ∈ {1, 2, . . .}.
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Set It := {tqn : n ∈ N} ∪ {0}.

Definition 2.3. [18] The q-integral of a function u : It → E is defined by

(Iqu)(t) =

∫ t

0

u(s)dqs =

∞∑
n=0

t(1− q)qnf(tqn),

provided that the series converges.

We note that (DqIqu)(t) = u(t), while if u is continuous at 0, then

(IqDqu)(t) = u(t)− u(0).

Definition 2.4. [6] The Riemann–Liouville fractional q-integral of order α ∈ R+ :=
[0,∞) of a function u : I → E is defined by (I0

qu)(t) = u(t), and

(Iαq u)(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
u(s)dqs; t ∈ I.

Lemma 2.5. [24] For α ∈ R+ := [0,∞) and λ ∈ (−1,∞) we have

(Iαq (t− a)(λ))(t) =
Γq(1 + λ)

Γ(1 + λ+ α)
(t− a)(λ+α); 0 < a < t < T.

In particular,

(Iαq 1)(t) =
1

Γq(1 + α)
t(α).

Definition 2.6. [25] The Riemann–Liouville fractional q-derivative of order α ∈ R+ of
a function u : I → E is defined by (D0

qu)(t) = u(t), and

(Dα
q u)(t) = (D[α]

q I [α]−α
q u)(t); t ∈ I,

where [α] is the integer part of α.

Definition 2.7. [25] The Caputo fractional q-derivative of order α ∈ R+ of a function
u : I → E is defined by (CD0

qu)(t) = u(t), and

(CDα
q u)(t) = (I [α]−α

q D[α]
q u)(t); t ∈ I.

Lemma 2.8. [25] Let α ∈ R+. Then the following equality holds:

(Iαq
CDα

q u)(t) = u(t)−
[α]−1∑
k=0

tk

Γq(1 + k)
(Dk

qu)(0).

In particular, if α ∈ (0, 1), then

(Iαq
CDα

q u)(t) = u(t)− u(0).

From the above lemma and in order to define a solution for the problem (1.1)-(1.2),
we conclude with the following lemma.
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Lemma 2.9. Let f : I × E × E → E such that f(·, u, v) ∈ C(I), for each u, v ∈ E.
Then the problem (1.1)-(1.2) is equivalent to the problem of obtaining solutions of the
integral equation

g(t) = f(t, u0 + (Iαq g)(t), g(t)),

and if g(·) ∈ C(I) is the solution of this equation, then

u(t) = u0 + (Iαq g)(t).

Definition 2.10. [9, 10, 11, 28] Let X be a Banach space and let ΩX be the family
of bounded subsets of X. The Kuratowski measure of noncompactness is the map
µ : ΩX → [0,∞) defined by

µ(M) = inf{ε > 0 : M ⊂ ∪mj=1Mj ,diam(Mj) ≤ ε} ,
where M ∈ ΩX .

The measure of noncompactness satisfies the following properties

(1) µ(M) = 0⇔M is compact (M is relatively compact).
(2) µ(M) = µ(M).
(3) M1 ⊂M2 ⇒ µ(M1) ≤ µ(M2).
(4) µ(M1 +M2) ≤ µ(M1) + µ(M2).
(5) µ(cM) = |c|µ(M), c ∈ R.
(6) µ(convM) = µ(M).

For our purpose we will need the following fixed point theorem:

Theorem 2.11. (Monch’s fixed point theorem [23]). Let D be a bounded, closed and
convex subset of a Banach space such that 0 ∈ D, and let N be a continuous mapping
of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ V is compact, (2.1)

holds for every subset V of D, then N has a fixed point.

3. Main results

In this section, we are concerned with existence results for the problem (1.1)-(1.2).

Definition 3.1. By a solution of problem (1.1)-(1.2), we mean a continuous function
u that satisfies the equation (1.1) on I and the initial condition (1.2).

The following hypotheses will be used in the sequel.

(H1) The function f : I × E × E → E is continuous.
(H2) There exists a continuous function p ∈ C(I,R+), such that

‖f(t, u, v)‖ ≤ p(t); for t ∈ I, and u, v ∈ E,
(H3) For each bounded set B ⊂ E and for each t ∈ I, we have

µ(f(t, B,C Dr
qB)) ≤ p(t)µ(B),

where CDr
qB = {CDr

qw : w ∈ B}, and µ is a measure of noncompactness on E.
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Set

p∗ = sup
t∈I

p(t), and L := sup
t∈I

∫ T

0

(t− qs)(α−1)

Γq(α)
dqs.

Theorem 3.2. Assume that the hypotheses (H1)− (H3) hold. If

` := Lp∗ < 1, (3.1)

then the problem (1.1)-(1.2) has at least one solution defined on I.

Proof. By using Lemma 2.9, we transform the problem (1.1)-(1.2) into a fixed point
problem. Consider the operator N : C(I)→ C(I) defined by

(Nu)(t) = u0 + (Iαq g)(t); t ∈ I, (3.2)

where g ∈ C(I) such that

g(t) = f(t, u(t), g(t)), or g(t) = f(t, u0 + (Iαq g)(t), g(t)).

For any u ∈ C(I) and each t ∈ I, we have

‖(Nu)(t)‖ ≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s)|dqs

≤ ‖u0‖+

∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ ‖u0‖+ p∗
∫ t

0

(t− qs)(α−1)

Γq(α)
dqs

≤ ‖u0‖+ Lp∗

:= R.

Thus

‖N(u)‖∞ ≤ R. (3.3)

This proves that N transforms the ball BR := B(0, R) = {w ∈ C : ‖w‖∞ ≤ R} into
itself.
We shall show that the operator N : BR → BR satisfies all the assumptions of
Theorem 2.11. The proof will be given in three steps.

Step 1. N : BR → BR is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ I, we have

‖(Nun)(t)− (Nu)(t)‖ ≤
∫ t

0
(t−qs)(α−1)

Γq(α) ‖(gn(s)− g(s))‖dqs,

where gn, g ∈ C(I) such that

gn(t) = f(t, un(t), gn(t)),

and

g(t) = f(t, u(t), g(t)).

Since un → u as n→∞ and f is continuous, we get

gn(t)→ g(t) as n→∞, for each t ∈ I.
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Hence

‖N(un)−N(u)‖∞ ≤ L‖gn − g‖∞ → 0 as n→∞.

Step 2. N(BR) is bounded and equicontinuous.
Since N(BR) ⊂ BR and BR is bounded, then N(BR) is bounded.
Next, let t1, t2 ∈ I, t1 < t2 and let u ∈ BR. Thus, we have

‖(Nu)(t2)− (Nu)(t1)‖ ≤
∥∥∥∥∫ t2

0

(t2qs)
(α−1)

Γq(α)
g(s)dqs−

∫ t1

0

(t1qs)
(α−1)

Γq(α)
g(s)dqs

∥∥∥∥ .
where g ∈ C(I) such that

g(t) = f(t, u(t), g(t)).

Hence, we get

‖(Nu)(t2)− (Nu)(t1)‖ ≤
∫ t2

t1

(t2qs)
(α−1)

Γq(α)
p(s)dqs

+

∫ t1

0

∣∣∣∣ (t2qs)(α−1)

Γq(α)
− (t1qs)

(α−1)

Γq(α)

∣∣∣∣ dqs
≤ p∗

∫ t2

t1

(t2qs)
(α−1)

Γq(α)
p(s)dqs

+ p∗
∫ t1

0

∣∣∣∣ (t2qs)(α−1)

Γq(α)
− (t1qs)

(α−1)

Γq(α)

∣∣∣∣ dqs.
As t1 −→ t2, the right-hand side of the above inequality tends to zero.

Step 3. The implication (2.1) holds.

Now let V be a subset of BR such that V ⊂ N(V ) ∪ {0}. V is bounded and equicon-
tinuous and therefore the function t → v(t) = α(V (t)) is continuous on I. By (H3)
and the properties of the measure µ, for each t ∈ I, we have

v(t) ≤ µ((NV )(t) ∪ {0})
≤ µ((NV )(t))

≤
∫ t

0

(tq − s)(α−1)

Γq(α)
p(s)µ(V (s))dqs

≤
∫ t

0

(tq − s)(α−1)

Γq(α)
p(s)v(s)dqs

≤ Lp∗‖v‖∞.

Thus

‖v‖∞ ≤ `‖v‖∞.

From (3.1), we get ‖v‖∞ = 0, that is, v(t) = µ(V (t)) = 0, for each t ∈ I, and then
V (t) is relatively compact in E. In view of the Ascoli–Arzelà theorem, V is relatively
compact in BR. Applying now Theorem 2.11, we conclude that N has a fixed point
which is a solution of the problem (1.1)-(1.2).
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4. An example

Let

l1 =

{
u = (u1, u2, . . . , un, . . .) :

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖l1 =

∞∑
n=1

|un|.

Consider the following problem of implicit fractional 1
4−difference equations{

(cD
1
2
1
4

un)(t) = fn(t, u(t), (cD
1
2
1
4

u)(t)); t ∈ [0, 1],

u(0) = (0, 0, . . . , 0, . . .),
(4.1)

where fn(t, u, v) =
t
−1
4 (2−n + un(t)) sin t

64L(1 + ‖u‖l1 +
√
t)(1 + ‖u‖l1 + ‖v‖l1)

, t ∈ (0, 1],

fn(0, u, v) = 0, .

with

f = (f1, f2, . . . , fn, . . .), and u = (u1, u2, . . . , un, . . .).

For each t ∈ (0, 1], we have

‖f(t, u(t))‖l1 =

∞∑
n=1

|fn(s, un(s))|

≤ t
−1
4 | sin t|

64L(1 + ‖u‖l1 +
√
t)(1 + ‖u‖l1 + ‖v‖l1)

(1 + ‖u‖l1)

≤ t
−1
4 | sin t|
64L

.

Thus, the hypothesis (H2) is satisfied withp(t) =
t
−1
4 | sin t|
64L

; t ∈ (0, 1],

p(0) = 0.

So, we have p∗ ≤ 1
64L , and then

Lp∗ =
1

64
< 1.

Simple computations show that all conditions of Theorem 3.2 are satisfied. Hence,
the problem (4.1) has at least one solution defined on [0, 1].
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Darboux problem for fractional partial
hyperbolic differential inclusions on unbounded
domains with delay

Mohamed Helal

Abstract. In this paper we investigate the existence of solutions of initial value
problems (IVP for short), for partial hyperbolic functional and neutral differential
inclusions of fractional order involving Caputo fractional derivative with finite
delay by using the nonlinear alternative of Frigon type for multivalued admissible
contraction in Fréchet spaces.
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sided mixed Riemann-Liouville integral, Caputo fractional-order derivative, finite
delay, Fréchet space, fixed point.

1. Introduction

In this paper we are concerned with the existence of solutions to fractional order
initial value problem (IVP for short), for the system

(cDr
0u)(t, x) ∈ F (t, x, u(t,x)), if (t, x) ∈ J, (1.1)

u(t, x) = φ(t, x), if (t, x) ∈ J̃ , (1.2)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), (t, x) ∈ J, (1.3)

where ϕ(0) = ψ(0), J := [0,∞) × [0,∞), J̃ := [−α,+∞) × [−β,+∞)\[0,∞) ×
[0,∞), cDr

0 is the standard Caputo’s fractional derivative of order r = (r1, r2) ∈
(0, 1] × (0, 1], F : J × C([−α, 0] × [−β, 0],Rn) →P(Rn) is a multivalued map with
compact valued, P(Rn) is the family of all subsets of Rn, φ ∈ C := C([−α, 0] ×
[−β, 0],Rn) is a given continuous function with φ(t, 0) = ϕ(t), φ(0, x) = ψ(x) for
each (t, x) ∈ J, ϕ : [0,∞) → Rn, ψ : [0,∞) → Rn are given absolutely continuous

Received 12 December 2019; Accepted 17 January 2020.
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functions and C is the space of continuous functions on [−α, 0]× [−β, 0].
We denote by u(t,x) the element of C defined by

u(t,x)(s, τ) = u(t+ s, x+ τ); (s, τ) ∈ [−α, 0]× [−β, 0],

here u(t,x)(·, ·) represents the history of the state u.
Next we consider the following system of partial neutral hyperbolic differential

inclusion of fractional order
cDr

0[u(t, x)− g(t, x, u(t,x))] ∈ F (t, x, u(t,x)), if (t, x) ∈ J, (1.4)

u(t, x) = φ(t, x), if (t, x) ∈ J̃ , (1.5)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), (t, x) ∈ J, (1.6)

where F, φ, ϕ, ψ are as in problem (1.1)-(1.3) and g : J ×C([−α, 0]× [−β, 0],Rn)→
Rn is a given continuous function.

It is well known that differential equations and inclusions of fractional order
play a very important role in describing some real world problems. For example some
problems in physics, mechanics, viscoelasticity, electrochemistry, control, porous me-
dia, electromagnetic, etc. (see [14, 20, 21, 22]). The theory of differential equations
and inclusions of fractional order has recently received a lot of attention and now
constitutes a significant branch of nonlinear analysis. Numerous research papers and
monographs have appeared devoted to fractional differential equations and inclusions,
for example see the monographs of Kilbas et al. [16], Lakshmikantham et al. [18], and
the papers by Belarbi et al. [3], Benchohra et al. [4, 5, 6, 7] and the references therein.

Differential delay equations and inclusions, or functional differential equations
and inclusions, have been used in modeling scientific phenomena for many years.
Often, it has been assumed that the delay is either a fixed constant or is given as an
integral in which case it is called a distributed delay; see for instance the books by
Lakshmikantham et al. [19], Wu [25] and the papers [8, 13, 23].

In this paper, we present existence result for the problems (1.1)-(1.3) and (1.4)-
(1.6). Our aim here is to give global existence results for the above problem. The
fundamental tools applied here are essentially multi-valued version of nonlinear alter-
native of Frigon type [10].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. Let n ∈ N and J0 = [0, n] × [0, n]. By C(J0,R) we
denote the Banach space of all continuous functions from J0 into Rn with the norm

‖u‖∞ = sup
(t,x)∈J0

‖u(t, x)‖,

where ‖ · ‖ denotes a suitable complete norm on Rn.
As usual, by AC(J0,R) we denote the space of absolutely continuous functions from
J0 into Rn and L1(J0,R) is the space of Lebesgue-integrable functions u : J0 → Rn
with the norm

‖u‖L1 =

∫ n

0

∫ n

0

‖u(t, x)‖dtdx.
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Definition 2.1. [24] Let r = (r1, r2) ∈ (0,∞) × (0,∞), θ = (0, 0) and u ∈ L1(J,Rn).
The left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Irθu)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1u(s, τ)dτds.

In particular,

(Iθθu)(t, x) = u(t, x), (Iσθ u)(t, x) =

∫ t

0

∫ x

0

u(s, τ)dτds; for almost all (t, x) ∈ J,

where σ = (1, 1).
For instance, Irθu exists for all r1, r2 ∈ (0,∞)× (0,∞), when u ∈ L1(J,Rn). Note also
that when u ∈ C(J,Rn), then (Irθu) ∈ C(J,Rn), moreover

(Irθu)(t, 0) = (Irθu)(0, x) = 0; (t, x) ∈ J.

Example 2.2. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθ t
λxω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
tλ+r1xω+r2 , for almost all (t, x) ∈ J.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
tx := ∂2

∂t∂x , the
mixed second order partial derivative.

Definition 2.3. [24] Let r ∈ (0, 1] × (0, 1] and u ∈ L1(J,Rn). The mixed fractional
Riemann-Liouville derivative of order r of u is defined by the expression

Dr
θu(t, x) = (D2

txI
1−r
θ u)(t, x)

and the Caputo fractional-order derivative of order r of u is defined by the expression

(cDr
0u)(t, x) = (I1−r

θ

∂2

∂t∂x
u)(t, x).

The case σ = (1, 1) is included and we have

(Dσ
θ u)(t, x) = (cDσ

θ u)(t, x) = (D2
txu)(t, x), for almost all (t, x) ∈ J.

Example 2.4. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

Dr
θt
λxω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
tλ−r1xω−r2 , for almost all (t, x) ∈ J.

3. Some properties of set-valued maps

Let (X, ‖ · ‖) be a Banach space. Denote

• P(X) = {Y ⊂ X : Y 6= ∅},
• Pcl(X) = {Y ∈ P(X) : Y closed},
• Pb(X) = {Y ∈ P(X) : Y bounded},
• Pcp(X) = {Y ∈ P(X) : Y compact},
• Pcp,c(X) = {Y ∈ P(X) : Y compact and convex}.
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For each u ∈ C(J,Rn), define the set of selections of F by

SF◦u = {f ∈ L1(J,Rn) : f(t, x) ∈ F (t, x, u(t, x)) a.e. (t, x) ∈ J}.

Let (X, d) be a metric space induced from the normed space (X, ‖ · ‖). Consider
Hd : P(X)× P(X) −→ R+ ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X), Hd) is a metric

space and (Pcl(X), Hd) is a generalized metric space (see [17]).

Definition 3.1. A multivalued map F : J ×Rn → P(Rn) is said to be Carathéodory if

(i) (t, x) 7−→ F (t, x, u) is measurable for each u ∈ Rn;
(ii) u 7−→ F (t, x, u) is upper semicontinuous for almost all (t, x) ∈ J.
F is said to be L1-Carathéodory if (i), (ii) and the following condition holds;

(iii) for each c > 0, there exists σc ∈ L1(J,R+) such that

‖F (t, x, u)‖P = sup{‖f‖ : f ∈ F (t, x, u)}
≤ σc(t, x) for all ‖u‖ ≤ c and for a.e. (t, x) ∈ J.

For more details on multivalued maps see the books of Aubin and Cellina [1],
Aubin and Frankowska [2], Deimling [9], Gorniewicz [12], Hu and Papageorgiou [15]
and Kisielewiecz [17].

4. Some properties in Fréchet spaces

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. We assume
that the family of semi-norms {‖ · ‖n} verifies :

‖u‖1 ≤ ‖u‖2 ≤ ‖u‖3 ≤ ... for every u ∈ X.

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such
that

‖v‖n ≤Mn for all v ∈ Y.
To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows : For every
n ∈ N, we consider the equivalence relation ∼n defined by : u ∼n v if and only if
‖u − v‖n = 0 for u, v ∈ X. We denote Xn = (X|∼n , ‖ · ‖n) the quotient space, the
completion of Xn with respect to ‖ · ‖n. To every Y ⊂ X, we associate a sequence
{Y n} of subsets Y n ⊂ Xn as follows: For every u ∈ X, we denote [u]n the equivalence
class of u of subset Xn and we defined Y n = {[u]n : u ∈ Y }. We denote Y n, intn(Y n)
and ∂nY

n, respectively, the closure, the interior and the boundary of Y n with respect
to ‖ · ‖n in Xn. For more information about this subject see [11].

Definition 4.1. A multivalued map F : X −→ P(X) is called an admissible contraction
with constant {kn}n∈N if for each n ∈ N there exists kn ∈ (0, 1) such that

(i) Hd(F (u), F (v)) ≤ kn||u− v||n for all u, v ∈ X.
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(ii) For every u ∈ X and every ε ∈ (0,∞)n, there exists v ∈ F (u) such that

||u− v||n ≤ ||u− F (u)||n + εn for every n ∈ N.

Theorem 4.2. (Nonlinear alternative of Frigon type) [10] Let X be a Fréchet space
and U an open neighborhood of the origin in X, and let N : U → P(X) be an admis-
sible multivalued contraction. Assume that N is bounded. Then one of the following
statements is holds:

(C1) N has at least one fixed point;
(C2) There exist λ ∈ [0, 1) and u ∈ ∂U such that u ∈ λN(u).

5. Existence of solutions

In this section, we give our main existence result for the problems (1.1)-(1.3)
and (1.4)-(1.5). For each n ∈ N we set

Cn = C([−α, n]× [−β, n],Rn)

and we define seminorms in C0 := C([−α,∞)× [−β,∞),Rn) by:

‖u‖n = {sup ‖u(t, x)‖ : −α ≤ t ≤ n,−β ≤ x ≤ n}.
Then C0 is a Fréchet space with the family {‖ · ‖n}. of seminorms.

5.1. The functional case

Now we are able to state and prove our main theorem for the problem (1.1)-(1.3).
Before starting and proving this result, we give what we mean by a solution of

the problem (1.1)-(1.3).

Definition 5.1. A function u ∈ C0 is said to be a solution of (1.1)-(1.3) if there exists
a function f ∈ L1(J,Rn) with f(t, x) ∈ F (t, x, u(t,x)) such that (cDr

0u)(t, x) = f(t, x)

and u satisfies equations (1.3) on J and the condition (1.2) on J̃ .

For the existence of solutions for the problem (1.1)-(1.3), we need the following lemma:

Lemma 5.2. A function u ∈ C0 is a solution of problem (1.1)-(1.3) if and only if u
satisfies the equation

u(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds

for all (t, x) ∈ J and the condition (1.2) on J̃ , where

z(t, x) = ϕ(t) + ψ(x)− ϕ(0).

Our main existence result in this section is based on the nonlinear alternative of
Frigon. We will need to introduce the following hypothesis:

(H1) F : J × C([−α, 0]× [−β, 0],Rn)→ Pcp,c(Rn) is a L1-Carathéodory map.
(H2) For each n ∈ N, there exist pn ∈ L1(J,R+) and Ψ : [0,∞)→ (0,∞) continuous

and nondecreasing such that

‖F (t, x, u)‖P ≤ pn(t, x)Ψ(||u||), for a.e. (t, x) ∈ J0 and each u ∈ C,
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(H3) For each n ∈ N, there exists `n ∈ L1(J0,R+) such that

Hd(F (t, x, u), F (t, x, v)) ≤ `n(t, x)|u− v|, for all u, v ∈ C,

and

d(0, (F (t, x, 0)) ≤ `n(t, x), a.e. (t, x) ∈ J0.

Where C := C([−α, 0]× [−β, 0],Rn).
(H4) For each n ∈ N, there exists a numbre Mn > 0 such that

Mn

||z||n +
Ψ(Mn)p∗nn

r1+r2

Γ(r1+1)Γ(r2+1)

> 1, (5.1)

where p∗n = sup
(t,x)∈J0

pn(t, x).

Theorem 5.3. Assume that hypotheses (H1)-(H4) hold. If

`∗nn
r1+r2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (5.2)

where
`∗n = sup

(t,x)∈J0
`n(t, x),

then the IVP (1.1)-(1.3) has at least one solution on [−α,∞]× [−β,∞].

Proof. Transform the problem (1.1)-(1.3) into a fixed point problem. Consider the
operator N : C0 →P(C0) defined by,

(Nu)(t, x) = h ∈ C0

such that

h(t, x) =


φ(t, x), (t, x) ∈ J̃ ,
z(t, x)+

1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds, (t, x) ∈ J,

where f ∈ SF,u.

Remark 5.4. For each u ∈ C0, the set SF,u is nonempty since by (H1), F has a
mesurable selection.

Let u be a possible solution of the inclusion u ∈ λN(u) for some 0 < λ < 1.
Thus for each (t, x) ∈ J0,

||u(t, x)|| = λ||z(t, x)||+ λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

||f(s, τ)||dτds

≤ ||z(t, x)||+ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

pn(s, τ)Ψ(||u(s,τ)||)dτds

≤ ||z||n +
Ψ(||u||n)p∗nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
.
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This implies by (H4) that, for each (t, x) ∈ J0, we have

||u||n
||z||n +

Ψ(||u||n)p∗nn
r1+r2

Γ(r1+1)Γ(r2+1)

≤ 1.

Then by condition (5.1) we have a contradiction, so there exists Mn such that ||u||n 6=
Mn. Since for every (t, x) ∈ J0, we have

‖u‖n ≤ max(‖φ‖C ,M∗n) := Rn.

Set

U = {u ∈ C0 : ‖u‖n ≤ Rn + 1 for all n ∈ N}.
We shall show that N : U →P(U) is a contraction and an admissible operator.
First, we prove that N is a contraction; that is, there exists γ < 1, such that

Hd(N(u)−N(u∗)) ≤ γ||u− u∗||n, for u, u∗ ∈ U.
Let u, u∗ ∈ U and h ∈ N(u). Then there exists f(t, x) ∈ F (t, x, u(t,x)) such that for
each (t, x) ∈ J0,

h(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds.

From (H3) it follows that

Hd(F (t, x, u(t,x))− F (t, x, u∗(t,x))) ≤ `n(t, x)||u(s,τ) − u∗(s,τ)||.

Hence there is exists f∗ ∈ F (t, x, u∗(t,x)) such that

|f(t, x)− f∗(t, x)| ≤ `n(t, x)||u(t,x) − u∗(t,x)||, ∀(t, x) ∈ J0.

Let us define for each (t, x) ∈ J0,

h∗(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f∗(s, τ)dτds.

Then we have

|h(t, x) − h∗(t, x)| ≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

× |f(s, τ)− f∗(s, τ)|dτds

≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1`n(s, τ)||u− u∗||

≤ `∗n||u− u∗||n
Γ(r1)Γ(r2)

∫ a

0

∫ b

0

(t− s)r1−1(x− τ)r2−1dτds,

where `∗n = sup
(s,τ)∈J0

`n(s, τ). Therefore

‖h− h∗‖n ≤
`∗nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
‖u− u∗‖n.
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By an analogous relation, obtained by interchanging the roles of u and u∗, it follows
that

Hd(N(u)−N(u∗)) ≤ `∗nn
r1+r2

Γ(r1 + 1)Γ(r2 + 1)
||u− u∗||n.

Hence by (5.2), N is a contraction.
Now, N : Cn →Pcp(Cn) is given by,

(Nu)(t, x) = h ∈ Cn
such that

h(t, x) =


φ(t, x), (t, x) ∈ J̃ ,
z(t, x)+

1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds, (t, x) ∈ J0,

where f ∈ SnF,u = {f ∈ L1(J0,Rn) : f(t, x) ∈ F (t, x, u(t,x)) a.e. (t, x) ∈ J0}. From

(H2)-(H3) and since F is compact valued, we can prove that for every u ∈ Cn, N(u) ∈
Pcp(Cn), and there exists u∗ ∈ Cn such that u∗ ∈ N(u∗). (For the proof see Benchohra
et al. [4]). Let h ∈ Cn, u ∈ U and ε > 0. Now, if ũ ∈ N(u∗), then we have

||u∗ − ũ||n ≤ ||u∗ − h||n + ||ũ− h||n.

Since h is arbitrary we may suppose that h ∈ B(ũ, ε) = {k ∈ Cn : ||k − ũ||n ≤ ε}.
Therefore,

||u∗ − ũ||n ≤ ||u∗ −N(u∗)||n + ε.

On the other hand, if ũ /∈ N(u∗), then ||ũ − N(u∗)||n 6= 0. Since N(u∗) is compact,
there exists v ∈ N(u∗) such that ||ũ−N(u∗)||n = ||ũ− v||n. Then we have

||u∗ − v||n ≤ ||u∗ − h||n + ||v − h||n.

Therefore,

||u∗ − v||n ≤ ||u∗ −N(u∗)||n + ε.

So, N is an admissible operator contraction. By our choice of U, there is no u ∈ ∂U
such that u ∈ λN(u), for λ ∈ (0, 1). As a consequence of the nonlinear alternative
of Frigon type, we deduce that N has a fixed point which is a solution to problem
(1.1)-(1.3).

5.2. The neutral type case

Now, we present the existence of solutions to fractional order IVP (1.4)-(1.6).

Definition 5.5. A function u ∈ C0 is said to be a solution of (1.4)-(1.6) if there exists
a function f ∈ L1(J,Rn) with f(t, x) ∈ F (t, x, u(t,x)) such that

cDr
0[u(t, x)− g(t, x, u(t,x))] = f(t, x)

and u satisfies equations (1.6) on J and the condition (1.5) on J̃ .

For the existence of solutions for the problem (1.4)-(1.6), we need the following lemma:
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Lemma 5.6. A function u ∈ C0 is a solution of problem (1.4)-(1.6) if and only if u
satisfies the equation

u(t, x) = z(t, x) + g(t, x, u(t,x))− g(t, 0, u(t,0))

−g(0, x, u(0,x)) + g(0, 0, u(0,0))

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds

for all (t, x) ∈ J and the condition (1.5) on J̃ , where

z(t, x) = ϕ(t) + ψ(x)− ϕ(0).

Theorem 5.7. Assume (H1)-(H3) and the following hypothesis holds.

(H5) For each n ∈ N, there exists dn ∈ C(J0,Rn) such that for each (t, x) ∈ J0 we
have

‖g(t, x, u)− g(t, x, v)‖ ≤ dn‖u− v‖, for each u ∈ C([−α, 0]× [−β, 0],Rn).

(H6) For each n ∈ N, there exists an numbre Mn > 0 such that

Mn

||z||n + 4g∗ + 4dnMn +
Ψ(Mn)p∗nn

r1+r2

Γ(r1+1)Γ(r2+1)

> 1, (5.3)

where p∗n = sup
(t,x)∈J

pn(t, x) and g∗ = sup
(s,τ)∈J0

||g(t, x, 0)||.

If

4dn +
`∗nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
, (5.4)

where

`∗n = sup
(t,x)∈J0

`n(t, x),

then there exists at least one solution for IVP (1.4)-(1.6) on [−α,∞)× [−β,∞).

Proof. Transform the problem (1.4)-(1.6) into a fixed point problem. Consider the
operator N1 : C0 → C0 defined by

(N1u)(t, x) = h1 ∈ C0

such that

h1(t, x) =


φ(t, x), (t, x) ∈ J̃ ,
z(t, x) + g(t, x, u(t,x))−
g(t, 0, u(t,0))− g(0, x, u(0,x)) + g(0, 0, u)+

1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds, (t, x) ∈ J,

where f ∈ SF,u.

Remark 5.8. For each u ∈ C0, the set SF,u is nonempty since by (H1), F has a
mesurable selection.
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Let u be a possible solution of the inclusion u ∈ λN1(u) for some 0 < λ < 1.
Thus for each (t, x) ∈ J0,

u(t, x) = λ[z(t, x) + g(t, x, u(t,x)) + g(t, 0, u(t,0)) + g(0, x, u(0,x)) + g(0, 0, u)]

+
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ)||dτds,

then, we have

||u(t, x)|| ≤ ||z(t, x)||+ ||g(t, x, u(t,x))||+ ||g(t, 0, u(t,0))||
+||g(0, x, u(0,x))||+ ||g(0, 0, u)||

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ)||dτds.

This implies by (H2) and (H5) that, for each (t, x) ∈ J0, we have

||u(t, x)|| ≤ ||z(t, x)||+ 4dn||u||+ ||g(t, x, 0)||
+||g(t, 0, 0)||+ ||g(0, x, 0)||+ ||g(0, 0, 0)||

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

pn(s, τ)Ψ(||u(s,τ)||)dτds

≤ ||z||n + 4g∗ + 4dn||u||n +
Ψ(||u||n)p∗nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
.

This implies by (H6) that, for each (t, x) ∈ J0, we have

||u||n
||z||n + 4g∗ + 4dn||u||n +

Ψ(||u||n)p∗nn
r1+r2

Γ(r1+1)Γ(r2+1)

≤ 1.

Then by condition (5.3) we have a contradiction, so there exists Mn such that ||u||n 6=
Mn. Since for every (t, x) ∈ J0, we have

‖u‖n ≤ max(‖φ‖C ,M∗n) := R′n.

Set

U = {u ∈ C0 : ‖u‖n ≤ R′n + 1 for all n ∈ N}.
We shall show that N1 : U →P(U) is a contraction and an admissible operator.
First, we prove that N1 is a contraction; that is, there exists γ < 1, such that

Hd(N1(u)−N1(u∗)) ≤ γ||u− u∗||n, for u, u∗ ∈ U.

Let u, u∗ ∈ U and h ∈ N1(u). Then there exists f(t, x) ∈ F (t, x, u(s,τ)) such that for
each (t, x) ∈ J0,

h1(t, x) = z(t, x) + g(t, x, u(t,x))− g(t, 0, u(t,0))

−g(0, x, u(0,x)) + g(0, 0, u)

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds.



Darboux problem for fractional partial hyperbolic differential... 713

From (H3) it follows that

Hd(F (t, x, u(t,x))− F (t, x, u∗(t,x))) ≤ `n(t, x)||u(t,x) − u∗(t,x)||.

Hence there is exists f∗ ∈ F (t, x, u∗(t,x)) such that

|f(t, x)− f∗(t, x)| ≤ `n(t, x)||u(t,x) − u∗(t,x)||, ∀(t, x) ∈ J0.

Let us define ∀(t, x) ∈ J0,

h∗1(t, x) = z(t, x) + g(t, x, u∗(t,x))− g(t, 0, u∗(t,0))− g(0, x, u∗(0,x)) + g(0, 0, u∗)

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds.

Then we have

||h1(t, x)− h∗1(t, x)|| ≤

≤ ‖g(t, x, u(t,x))− g(t, x, u∗(t,x))‖+ ‖g(t, 0, u(t,0))− g(t, 0, u∗(t,0))‖
+‖g(0, x, u(0,x))− g(0, x, u∗(0,x))‖+ ‖g(0, 0, u)− g(0, 0, u∗)‖

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1||f(s, τ)− f∗(s, τ)||dτds

≤ dn(‖u(t,x) − u∗(t,x)‖n + ‖u(t,0) − u∗(t,0)‖n
+‖u(0,x) − u∗(0,x)‖n + ‖u− u∗‖n)

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1`n(s, τ)||u− u∗||dτds

≤ 4dn‖u− u∗‖n

+
`∗n||u− u∗||n

Γ(r1 + 1)Γ(r2 + 1)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

≤
(

4dn +
`∗nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

)
‖u− u∗‖n,

where `∗n = sup
(s,τ)∈J0

`n(s, τ). Therefore

‖h1 − h∗1‖n ≤
(

4dn +
`∗nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

)
‖u− u∗‖n.

By an analogous relation, obtained by interchanging the roles of u and u∗, it follows
that

Hd(N1(u)−N1(u∗)) ≤
(

4dn +
`∗nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

)
‖u− u∗‖n.

Hence by (5.4), N1 is a contraction.

Now, N1 : Cn →Pcp(Cn) is given by

(N1u)(t, x) = h1 ∈ Cn
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such that

h1(t, x) =


φ(t, x), (t, x) ∈ J̃ ,
z(t, x) + g(t, x, u(t,x))
−g(t, 0, u(t,0))− g(0, x, u(0,x)) + g(0, 0, u)+

1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ)dτds, (t, x) ∈ J,

where f ∈ SnF,u = {f ∈ L1(J0,Rn) : f(t, x) ∈ F (t, x, u(t,x)) a.e. (t, x) ∈ J0}. From

(H2)-(H3) and since F is compact valued, we can prove that for every u ∈ Cn, N1(u) ∈
Pcp(Cn), and there exists u∗ ∈ Cn such that u∗ ∈ N1(u∗). Let h1 ∈ Cn, u ∈ U and
ε > 0. Now, if ũ ∈ N1(u∗), then we have

||u∗ − ũ||n ≤ ||u∗ − h1||n + ||ũ− h1||n.

Since h1 is arbitrary we may supose that h1 ∈ B(ũ, ε) = {k ∈ Cn : ||k − ũ||n ≤ ε}.
Therefore,

||u∗ − ũ||n ≤ ||u∗ −N1(u∗)||n + ε.

On the other hand, if ũ /∈ N1(u∗), then ||ũ−N1(u∗)||n 6= 0. Since N1(u∗) is compact,
there exists v ∈ N1(u∗) such that ||ũ−N1(u∗)||n = ||ũ− v||n. Then we have

||u∗ − v||n ≤ ||u∗ − h1||n + ||v − h1||n.

Therefore,

||u∗ − v||n ≤ ||u∗ −N1(u∗)||n + ε.

So, N1 is an admissible operator contraction. By our choice of U, there is no u ∈ ∂U
such that u ∈ λN1(u), for λ ∈ (0, 1). As a consequence of the nonlinear alternative
of Frigon type, we deduce that N1 has a fixed point which is a solution to problem
(1.4)-(1.6).

6. Examples

As an application of our results we consider the following hyperbolic functional
differential inclusions of the form

(cDr
0u)(t, x) ∈ F (t− 1, x− 2, u), if (t, x) ∈ J := [0,∞)× [0,∞), (6.1)

u(t, 0) = t, u(0, x) = x2, (t, x) ∈ J, (6.2)

u(t, x) = t+ x2, (t, x) ∈ J̃ := [−1,∞)× [−2,∞)\[0,∞)× [0,∞), (6.3)

where F : J × C([−1, 0] × [−2, 0],Rn) →P(Rn) is a multivalued map with compact
valued, P(Rn) is the family of all subsets of Rn.

Thus under appropriate conditions on the function F as those mentioned in
the hypotheses (H1)-(H4) implies that problem (6.1)-(6.3) has at least one solution
defined on [−1,∞)× [−2,∞).

Acknowledgment. The author is grateful to the referees for the careful reading of the
paper and for their helpful remarks.
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Blow-up results for damped wave equation with
fractional Laplacian and non linear memory

Tayeb Hadj Kaddour and Ali Hakem

Abstract. The goal of this paper is to study the nonexistence of nontrivial solu-
tions of the following Cauchy problem

utt + (−∆)β/2u+ ut =

∫ t

0

(t− τ)−γ |u(τ, ·)|p dτ,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,

where p > 1, 0 < γ < 1, β ∈ (0, 2) and (−∆)β/2 is the fractional Laplacian

operator of order β
2

. Our approach is based on the test function method.

Mathematics Subject Classification (2010): 26A33, 35K55, 74G25, 74H35.

Keywords: Damped wave equation, blow-up, Fujita’s exponent, fractional
derivative.

1. Introduction

The main goal of this paper is to discuss the critical exponent to the following
Cauchy problem

utt + (−∆)β/2u+ ut =

∫ t

0

(t− τ)
−γ |u(τ, ·)|p dτ,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,

(1.1)

where (−∆)s, s ∈ (0, 1) , is the fractional Laplacian operator defined by

(−∆)sf(x) = Cn,s P.V

∫
IRn

f(x)− f(y)

|x− y|n+2s
dy, x ∈ Rn, (1.2)

Received 02 February 2020; Accepted 10 May 2020.
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as long as the right-hand side exists, where P.V stands for the Cauchy’s principal
value and

Cn,s =
4sΓ

(
n
2 + s

)
π
n
2 Γ(−s)

is the normalization constant and Γ denotes the Gamma function. Indeed, the
fractional Laplacian (−∆)s, s ∈ (0, 1) is a pseudo-differential operator of symbol
p(x, ξ) = |ξ|2s, ξ ∈ Rn, defined by

(−∆)sv = F−1
(
|ξ|2sFv(ξ)

)
, for all v ∈ S ′(Rn), (1.3)

where F and F−1 are, respectively, the Fourier transform and its inverse. In fact
(−∆)s is a particular case of Levy operator L defined by

Lv(x) = F−1
(
a(ξ)Fv(ξ)

)
(x), for all v ∈ S ′(Rn), x ∈ Rn. (1.4)

For more details about these notions, we refer to ([1], [8], [13], [9], [3], [14]) and the
references therein.
Before we present our results, let us mention below some motivations for studying
the problem of the type (1.1). In [2], Cazenave and al. considered the corresponding
equation 

ut −∆u =

∫ t

0

(t− τ)−γ |u(τ, ·)|p−1u(τ, ·)dτ,

0 ≤ γ < 1, u0 ∈ C0(Rn).

(1.5)

It was shown that, if

pγ = 1 +
2(2− γ)

(n− 2 + 2γ)+
and p∗ = max

(
pγ , γ

−1
)
,

where

(n− 2 + 2γ)+ = max(n− 2 + 2γ, 0).

Then

1. If γ 6= 0, p ≤ p∗ and u0 > 0, then the solution u of (1.5) blows up in finite time.

2. If γ 6= 0, p > p∗ and u0 ∈ Lq∗(Rn) (where q∗ = (p−1)n
4−2γ ) with ‖u0‖Lq∗ small

enough, then u exists globally. In particular, They proved that the critical ex-
ponent in Fujita’s sense p∗ is not the one predicted by scaling. This is not a
surprising result since it is well known that scaling is efficient only for parabolic
equations and not for pseudo-parabolic ones. To show this, it is sufficient to note
that, formally, equation (1.5) is equivalent to

Dα
0|tut −D

α
0|t∆u = Γ(α) |u|p−1

u,

where α = 1− γ and Dα
0|t is the fractional derivative operator of order α

(α ∈ (0, 1)) in Riemann-Liouville sense defined by

Dα
0|tu =

d

dt
J1−α

0|t u, (1.6)

and J1−α
0|t is the fractional integral of order 1 − α defined by the formula (2.2)

bellow.
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In the special case γ = 0, Souplet [15] proved that the nonzero positive solution of
(1.5) blows -up in finite time. Note that the classical damped wave equation with
nonlinear memory, namely

utt −∆u+ ut =

∫ t

0

(t− τ)−γ |u(τ, ·)|pdτ, (1.7)

was investigated by Fino [4]. He studied the global existence and blow-up of solutions.
He used as the main tool the weighted energy method with a weight similar to the one
introduced by G. Todorova an B. Yardanov [16], while he employed the test function
method to derive nonexistence results. In particular, he found the same pγ and so
the same critical exponent p∗ founded by Cazenave and al in [2]. More recently, the
Authors of [6] generalized the results of [2] and [4] by establishing nonexistence results
for the following Cauchy problem:

utt −∆u+Dσ
0|tut =

∫ t

0

(t− τ)−γ |u(τ, ·)|pdτ, t > 0.

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn.

(1.8)

Remark 1.1. Throughout, C denotes a positive constant, whose value may change
from line to line.

2. Blow up solutions

This section is devoted to prove blow-up results of problem (1.1). The method
which we will use for our task is the test function method considered by Mitidieri and
Pohozaev ([10], [11]), Pohozaev and Tesei [12], Fino [4], Hadj-Kaddour and Hakem
([5], [6]); it was also used by Zhang [17].

Before that, one can show that the problem (1.1) can be written in the following form:
utt + (−∆)β/2u+ ut = Γ(α)Jα0|t(|u|

p),

u(0, x) = u0(x), ut(0, x) = u1(x), for all x ∈ Rn,
(2.1)

where α = 1− γ and Jα0|t is the fractional integral of order α (α ∈ (0, 1)) defined for

all v ∈ L1
loc(R), by

Jα0|tv(t) =
1

Γ(α)

∫ t

0

v(s)

(t− s)1−α ds, (2.2)

where (−∆)β/2 is the fractional Laplacian operator of order β/2, β ∈ (0, 2).
First, let us introduce what we mean by a weak solution for problem (2.1).

Definition 2.1. Let T > 0, γ ∈ (0, 1) and β ∈ (0, 2). A weak solution for the Cauchy
problem (2.1) in [0, T )×Rn with initial data (u0, u1) ∈ L1

loc(Rn)×L1
loc(Rn) is a locally
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integrable function u ∈ Lp
(
(0, T ), Lploc(Rn)

)
that satisfies

Γ(α)

∫ T

0

∫
Rn
Jα0|t(|u|

p)ϕ(t, x)dtdx+

∫
Rn

(u0(x) + u1(x))ϕ(0, x)dx

−
∫
Rn
u0(x)ϕt(0, x)dx =

∫ T

0

∫
Rn
u(t, x)ϕtt(t, x)dtdx

−
∫ T

0

∫
Rn
u(t, x)ϕt(t, x)dtdx−

∫ T

0

∫
Rn
u(t, x)(−∆)β/2ϕ(t, x)dtdx, (2.3)

for all non-negative test function ϕ ∈ C2([0, T ]× Rn) such that ϕ(T, ·) = ϕt(T, ·) = 0
and α = 1− γ. If T =∞, we call u a global in time weak solution to (2.1).

Now, we are ready to state the main results of this paper. For all γ ∈ (0, 1),
β ∈ (0, 2) and n ∈ N, we put

pγ(β) = 1 +
β(2− γ)

(n− β(1− γ))+
and p∗ = max{pγ(β), γ−1}. (2.4)

Theorem 2.2. Let 0 < γ < 1, p ∈ (1,∞) for n = 1, 2 and 1 < p < n
n−2 for n ≥ 3. We

assume that (u0, u1) ∈ H1(Rn)× L2(Rn) satisfying the following relation:∫
Rn
ui(x)dx > 0, i = 0, 1. (2.5)

Moreover, we suppose the condition

p ≤ p∗.
Then, the problem (2.1) admits no global weak solution.

The proof of our main result is given in the next section.

3. Proofs

In this section, we give the proof of Theorem 2.2. For this task, we choose a test
function for some T > 0, as follows:

ϕ(t, x) = Dα
t|Tψ(t, x) = ϕ`1(x)Dα

t|Tϕ2(t), (t, x) ∈ R+ × Rn, (3.1)

where ` > 1 and Dα
t|T is the right fractional derivative operator of order α in the

sense of Riemann-Liouville defined by

Dα
t|T v(t) = − 1

Γ(1− α)

∂

∂t

∫ T

t

v(s)

(s− t)α
ds, (3.2)

and the functions ϕ1 and ϕ2 are given by

ϕ1(x) = φ
(x2

K

)
, ϕ2(t) =

(
1− t

T

)σ
+
, (3.3)

with K > 0, σ > 1 and φ is a smooth non-increasing function such that

φ(s) =

{
1 if 0 ≤ s ≤ 1,
0 if s ≥ 2,

0 ≤ φ ≤ 1 everywhere and |φ′(s)| ≤ C

s
. (3.4)
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We also denote by ΩK for the support of ϕ1, that is

ΩK = suppϕ1 =
{
x ∈ Rn, |x|2 ≤ 2K

}
, (3.5)

and by ∆K for the set containing the support of ∆ϕ1 which is defined as follows:

∆K =
{
x ∈ Rn, K ≤ |x|2 ≤ 2K

}
. (3.6)

Furthermore, for every f, g ∈ C([0, T ]) such that Dα
0|tf(t) and Dα

t|T g(t) exist and

are continuous, for all t ∈ [0, T ], 0 < α < 1 we have the formula of integration by
parts([14]) ∫ t

0

f(t)Dα
t|T g(t)dt =

∫ t

0

(
Dα

0|tf(t)
)
g(t)dt, (3.7)

Note also that, for all u ∈ Cn[0, T ] and all integers n ≥ 0, we have

(−1)n∂nt D
α
t|Tu(t) = Dα+n

t|T u(t), (3.8)

where ∂nt is the n−times ordinary derivative with respect to t. Moreover, for all
1 ≤ q ≤ ∞, the following formula(

Dα
0|t ◦ I

α
0|t
)
(u) = u for all u ∈ Lq ([0, T ]) , (3.9)

holds almost everywhere on [0,T].
The following Lemmas are crucial in the proof of Theorem 2.2.

Lemma 3.1. Let σ > 1 and ϕ2 be the function defined by

ϕ2(t) =
(

1− t

T

)β
+
.

Then, for all α ∈ (0, 1) we have

Dα
t|Tϕ2(t) = C1T

−β(T − t)β−α+ = CT−α
(

1− t

T

)β−α
+

,

Dα+1
t|T ϕ2(t) = C2T

−β(T − t)β−α−1
+ = CT−α−1

(
1− t

T

)β−α−1

+
,

and

Dα+2
t|T ϕ2(t) = C3T

−β(T − t)β−α−2
+ = CT−α−2

(
1− t

T

)β−α−2

+
.

In particular, for all α ∈ (0, 1), one has

Dα+j
t|T ϕ2(0) = CjT

−α−2, for all j = 0, 1, 2, (3.10)

and

Cj =
Γ(β + 1)

Γ(β − α+ 1− j)
, j = 0, 1, 2. (3.11)

Proof. The proof of Lemma 3.1 is straight-forward. For all α ∈ (0, 1), we have by
definition (3.2)

Dα
t|Tϕ2(t) = − 1

Γ(1− α)

∂

∂t

∫ T

t

ϕ2(s)

(s− t)α
ds.
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By using the Euler’s change of variable

s 7→ y =
s− t
T − t

, (3.12)

we get,

Dα
t|Tϕ2(t) =

1

Γ(1− α)

∂

∂t

∫ T

t

(1− s
T )β

(s− t)α
ds

=
T−β

Γ(1− α)

∂

∂t

(
(T − t)β−α+1

∫ 1

0

y−α(1− y)βdy

)
=

(β − α+ 1)B(1− α, β + 1)

Γ(1− α)
T−β(T − t)β−α

=
Γ(β + 1)

Γ(β − α+ 1)
T−α

(
1− t

T

)β−α
,

where B is the Beta function defined by

B(u, v) =

∫ 1

0

tu−1(1− t)v−1dt, B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
. (3.13)

For the second and the third, we apply directly formula (3.8) to show that

∀t ∈ [0, T ] : Dα+i
t|T ϕ2(t) = (−1)i∂tD

α
t|Tϕ2(t), for all i = 1, 2.

Hence the result is conclude. �

Lemma 3.2 (Ju Cordoba). ([7]) Let 0 ≤ β ≤ 2, ` ≥ 1 and (−∆)β/2 be the operator
defined by (1.3). Then for all Ψ ∈ D((−∆)β/2), the following inequality holds

(−∆)β/2Ψ` ≤ `Ψ`−1(−∆)β/2Ψ.

Proof. (Theorem 2.2) The proof is by contradiction. Suppose that u is a global weak
solution to (2.1). Introducing the test function defined by (3.1), using the formula of
integration by parts (3.7) and the identity (3.9) we get easily∫ T

0

∫
Rn
Jα0|t(|u|

p)ϕ(t, x)dtdx =

∫ T

0

∫
Rn
Iα0|t(|u|

p)Dα
t|Tψ(t, x)dtdx

=

∫ T

0

∫
Rn
Dα

0|T
(
Jα0|T (|u|p)

)
ψ(t, x)dtdx

=

∫ T

0

∫
Rn
|u|pψ(t, x)dtdx. (3.14)

For the second term of the left-hand side of equality (2.3), thanks to Lemma 3.1, we
have ∫

Rn

(
u0(x) + u1(x)

)
ϕ(0, x)dx =

∫
Rn

(
u0(x) + u1(x)

)
ϕ`1(x)Dα

t|Tϕ2(t)|t=0 dx

= CT−α
∫
Rn

(
u0(x) + u1(x)

)
ϕ`1(x)dx. (3.15)
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Analogously, we obtain for the third term of the left hand-side of the weak formulation
(2.3) ∫

Rn
u0(x)ϕt(0, x)dx = −CT−α−1

∫
Rn
u0(x)ϕ`1(x)dx. (3.16)

Therefore, using formula (3.8) with n = 1 and n = 2, we get respectively∫ T

0

∫
Rn
u(t, x)ϕt(t, x)dtdx = −

∫ T

0

∫
Rn
u(t, x)ϕ`1(x)Dα+1

t|T ϕ2(t)dtdx, (3.17)

and ∫ T

0

∫
Rn
u(t, x)ϕtt(t, x)dtdx =

∫ T

0

∫
Rn
u(t, x)ϕ`1(x)Dα+2

t|T ϕ2(t)dtdx. (3.18)

Finally for the third term of the right-hand side of the weak formulation (2.3), we
obtain ∫ T

0

∫
Rn
u(t, x)(−∆)−β/2ϕ(t, x)dtdx

≤ `×
∫ T

0

∫
Rn
u(t, x)ϕ`−1

1 (−∆)−β/2ϕ1(x)Dα
t|Tϕ2(t)dtdx,

(3.19)

where we have used Lemma 3.2 with Ψ = ϕ1.

Inserting all the formulas (3.14), (3.15), (3.16), (3.17), (3.18) and (3.19) in the weak
formulation (2.3) we arrive at

Γ(α)

∫ T

0

∫
Rn
|u|pψ(t, x)dtdx+ CT−α

∫
Rn

(
u0(x) + u1(x)

)
ϕ`1(x)dx

+CT−α−1

∫
Rn
u0(x)ϕ`1(x)dx ≤ C

(∫ T

0

∫
Rn
|u(t, x)|ϕ`1(x)|Dα+2

t|T ϕ2(t)|dtdx

+

∫ T

0

∫
Rn
|u(t, x)|ϕ`1(x)|Dα+1

t|T ϕ2(t)|dtdx

+

∫ T

0

∫
Rn
|u(t, x)|ϕ`−1

1 (−∆)−β/2ϕ1(x)|Dα
t|Tϕ2(t)|dtdx

)
, (3.20)

where C > 0 independent of T . Next, using the fact that (2.5) imply∫
Rn

(
u0(x) + u1(x)

)
ϕ`1(x)dx > 0 and

∫
Rn
u0(x)ϕ`1(x)dx > 0, (3.21)

we deduce easily from (3.20) the inequality∫ T

0

∫
Rn
|u|pψ(t, x)dtdx ≤ C(J1 + J2 + J3), (3.22)
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where

J1 =

∫ T

0

∫
Rn
|u(t, x)|ϕ`1(x)|Dα+2

t|T ϕ2(t)|dtdx, (3.23)

J2 =

∫ T

0

∫
Rn
|u(t, x)|ϕ`1(x)|Dα+1

t|T ϕ2(t)|dtdx, (3.24)

J3 =

∫ T

0

∫
Rn
|u(t, x)|ϕ`−1

1 (−∆)−β/2ϕ1(x)|Dα
t|Tϕ2(t)|dtdx. (3.25)

Now, the main goal is to estimate the integrals J1, J2 and J3. To do so, we apply the
following ε−Young inequality

AB ≤ εAp + C(ε)Bq, pq = p+ q, C(ε) = (εp)−q/pq−1.

It is quite easy to check that

J1 =

∫ T

0

∫
Rn
|u(t, x)|ψ

1
pψ−

1
pϕ`1(x)|Dα+2

t|T ϕ2(t)|dtdx

≤ ε
∫ T

0

∫
Rn
|u|pψdtdx+ C(ε)

∫ T

0

∫
Rn
ϕ`1ϕ

− 1
p−1

2 |Dα+2
t|T ϕ2|

p
p−1 dtdx. (3.26)

Similarly, for J2 and J3, we obtain

J2 ≤ ε
∫ T

0

∫
Rn
|u(t, x)|pψ(t, x)dtdx

+ C(ε)

∫ T

0

∫
Rn
ϕ`1(x)ϕ

− 1
p−1

2 |Dα+1
t|T ϕ2(t)|

p
p−1 dtdx,

(3.27)

J3 ≤ ε
∫ T

0

∫
Rn
|u(t, x)|pψ(t, x)dtdx

+ C(ε)

∫ T

0

∫
Rn
ϕ
`− p

p−1

1

(
−∆)β/2ϕ1

) p
p−1ϕ

− 1
p−1

2 |Dα
t|Tϕ2|

p
p−1 dtdx.

(3.28)

Plugging the estimates (3.26), (3.27), (3.28) into (3.22) we find, for ε small enough,
the estimate∫ T

0

∫
Rn
|u|pψ(t, x)dtdx ≤ C

(∫ T

0

∫
Rn
ϕ`1ϕ

− 1
p−1

2 |Dα+2
t|T ϕ2|

p
p−1 dtdx

+

∫ T

0

∫
Rn
ϕ`1(x)ϕ

− 1
p−1

2 |Dα+1
t|T ϕ2(t)|

p
p−1 dtdx

+

∫ T

0

∫
Rn
ϕ
`− p

p−1

1

(
−∆)β/2ϕ1

) p
p−1ϕ

− 1
p−1

2 |Dα
t|Tϕ2|

p
p−1 dtdx

)
≤ C(I1 + I2 + I3), (3.29)
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where C > 0 independent of T , and

I1 =

∫ T

0

∫
Rn
ϕ`1ϕ

− 1
p−1

2 |Dα+2
t|T ϕ2|

p
p−1 dtdx, (3.30)

I2 =

∫ T

0

∫
Rn
ϕ`1(x)ϕ

− 1
p−1

2 |Dα+1
t|T ϕ2(t)|

p
p−1 dtdx, (3.31)

I3 =

∫ T

0

∫
Rn
ϕ
`− p

p−1

1

(
−∆)β/2ϕ1

) p
p−1ϕ

− 1
p−1

2 |Dα
t|Tϕ2|

p
p−1 dtdx. (3.32)

The aim, now, is to estimate the integrals I1, I2 and I3. We have to distinguish two
cases:
Case of p ≤ pγ(β)
At this stage, we introduce the scaled variables.

x = T
1
β y and t = Tτ. (3.33)

Let K = T 1/β . Using Fubini’s theorem, we get, for I1

I1 =
(∫

ΩT

ϕ`1(x)dx
)(∫ T

0

ϕ2(t)−
1
p−1 |Dα+2

t|T ϕ2(t)|
p
p−1 dt

)
=
(
T
n
β

∫ 2

0

φ`(y2)dy
)(
T 1−(α+2) p

p−1

∫ 1

0

(1− τ)−
β
p−1 +(β−α−2) p

p−1 dτ
)

= CT 1−(α+2) p
p−1 +n

β , (3.34)

where we have used ∫
ΩT

ϕ`1(x)dx = T
n
β

∫ 2

0

φ`(y2)dy = CT
n
β , (3.35)

and ∫ 1

0

(1− τ)−
β
p−1 +(β−α−2) p

p−1 dτ = C. (3.36)

Similarly, for I2 and I3, we obtain

I2 =
(∫

ΩT

ϕ`1(x)dx
)(∫ T

0

ϕ2(t)−
1
p−1 |Dα+1

t|T ϕ2(t)|
p
p−1 dt

)
= CT 1−(α+1) p

p−1 +n
β ,

(3.37)

and

I3 =

∫ T

0

∫
Rn
ϕ
`− p

p−1

1 (x)
(
−∆)β/2ϕ1(x)

) p
p−1ϕ

− 1
p−1

2 (t)|Dα
t|Tϕ2(t)|

p
p−1 dtdx

=

∫
ΩT

ϕ
`− p

p−1

1 (x)
(
−∆)β/2ϕ1(x)

) p
p−1 dx

∫ T

0

ϕ
− 1
p−1

2 (t)|Dα
t|Tϕ2(t)|

p
p−1 dt

= CT 1−(α+ 2
β ) p

p−1 +n
β . (3.38)

Combining (3.38), (3.37) and (3.36), it holds from (3.29)∫ T

0

∫
ΩT

|u(t, x)|pψ(t, x)dtdx ≤ CT−δ, (3.39)
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for some positive constant C independent of T and

δ = 1− (α+ 1)
p

p− 1
+
n

β
. (3.40)

Now we distinguish between two other subcases as follows:
Sub-case: p < pγ(β)
Noting that

p < pγ(β)⇐⇒ δ > 0. (3.41)

Then, by passing to the limit in (3.39) as T goes to ∞ and invoking the fact that

lim
T−→∞

ψ(t, x) = 1, (3.42)

we get after applying the dominate convergence theorem of Lebesgue that∫ +∞

0

∫
Rn
|u(t, x)|pdtdx = 0. (3.43)

This means that u = 0 and this is a contradiction.
The second case is:
Sub-case: p = pγ(β)
First, we remark that the condition p = pγ(β) is equivalent to δ = 0. Then, by taking
the limit as T →∞ in (3.39) together with the consideration δ = 0 we get∫ +∞

0

∫
Rn
|u|p dtdx < +∞, (3.44)

from which we can deduce that

lim
T→∞

∫ +∞

0

∫
∆T

|u|p ψdtdx = 0, (3.45)

where ∆T is defined by (3.6). Fixing arbitrarily R in ]0, T [ for some T > 0 such that

when T → ∞ we don’t have R → ∞ at the same time and taking K = R−
1
β T

1
β .

First, we apply the following Hölder’s inequality∫
X

uvdµ ≤
(∫

X

updµ
) 1
p
(∫

X

vqdµ
) 1
q

, (3.46)

which happens for all u ∈ Lp(X) and v ∈ Lq(X) such that p, q ∈ (1,+∞) and
pq = p+ q instead of ε−Young’s one to estimate the integral J3 defined by (3.25) on
the set

ΩTR−1 =
{
x ∈ Rn : |x|2 ≤ 2R−

1
β T

1
β

}
= suppϕ1. (3.47)

Taking into account the fact that supp∆ϕ1 ⊂ ∆TR−1 ⊂ ΩTR−1 where ∆TR−1 is
defined by

∆TR−1 =
{
x ∈ Rn : R−

1
β T

1
β ≤ |x|2 ≤ 2R−

1
β T

1
β

}
, (3.48)
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we obtain the estimate∫ T

0

∫
Rn
|u(t, x)|ϕ`−1

1 (−∆)−β/2ϕ1(x)|Dα
t|Tϕ2(t)|dtdx ≤

(∫ T

0

∫
∆TR−1

|u|pψdtdx
) 1
p

×
(∫ T

0

∫
∆TR−1

ψ−
q
pϕ

(`−1)q
1

(
(−∆)β/2ϕ1

)q|Dα
t|Tϕ2|qdtdx

) 1
q

, (3.49)

while we estimate J1 and J2 by using ε−Young inequality as we did in the first case.
Then we have to estimate the integrals I1, I2 and Ĩ3 where I1 and I2 are given by
(3.30) and (3.31) respectively and Ĩ3 is defined by

Ĩ3 =
(∫ T

0

∫
∆TR−1

ψ−
q
pϕ

(`−1)q
1

(
(−∆)β/2ϕ1

)q|Dα
t|Tϕ2|qdtdx

) 1
q

. (3.50)

For this task, we consider the scaled change of variables

x = R−
1
β T

1
β and t = T

1
β τ. (3.51)

In this way, we find after using Fubini’s theorem

I1 + I2 ≤ C
(
T−(α+2) p

p−1 +n
β+1 + T−(α+1) p

p−1 +n
β+1

)
R−

n
β . (3.52)

Moreover, taking into account the hypothesis δ = 0 we get from (3.52) the estimate

I1 + I2 ≤ CR−
n
β , (3.53)

for C > 0 independent of R and T . In the other hand, we may estimate Ĩ3 by using
the same change of variables (3.51) as follows

Ĩ3 ≤ CR
1
β−q

n
β . (3.54)

Combining the estimates (3.54) and (3.53) together with (3.22), we obtain the in-
equality ∫ T

0

∫
ΩTR−1

|u(t, x)|pψ(t, x)dtdx ≤ CR−
n
β

+ CR
1
β−q

n
β

(∫ T

0

∫
∆TR−1

|u(t, x)|pψ(t, x)dtdx
) 1
p

.

(3.55)

Using (3.45) and the fact that lim
T→+∞

ψ(t, x) = 1 we obtain from (3.55) as T → +∞.∫ ∞
0

∫
Rn
|u|pdtdx ≤ CR−

n
β ,

which means that necessarily R→ +∞ and this is a contradiction.
Now we deal with the second main result in Theorem 2.2.
Case of p ≤ 1

γ

Even this case is divided into two subcases as follows:
2. i. Subcase of p < 1

γ

In this case we take K = R
1
β , where R is a fixed positive number. Now let us turn

to estimate the integrals J1, J2 and J3 by using ε−Young inequality as we did in the
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first case, so we obtain the estimate (3.29). The aim, now, is to estimate the integrals
I1, I2 and I3 defined respectively by (3.30), (3.31) and (3.32), on the set

ΩR :=
{
x ∈ Rn : |x| ≤ 2R

1
β
}

= suppϕ1, (3.56)

since they are null outside ΩR. For this reason, we consider the following scaled
variables

x = R
n
β y and t = Tτ. (3.57)

So, for I1 we have

I1 =
(∫

ΩR

ϕ`1(x)dx
)(∫ T

0

ϕ2(t)−
1
p−1 |Dα+2

t|T ϕ2(t)|
p
p−1 dt

)
=
(
R
n
β

∫ 2

0

φ`(y2)dy
)(
T 1−(α+2) p

p−1

∫ 1

0

(1− τ)−
β
p−1 +(β−α−2) p

p−1 dτ
)

= CR
n
β T 1−(α+2) p

p−1 ,

(3.58)

for some constant C > 0 independent of R and T . In the same way, we obtain

I2 = CR
n
β T 1−(α+1) p

p−1 , (3.59)

where C > 0 is of R and T . Finally

I3 = CR(n2−
p
p−1 ) 1

β T 1−α p
p−1 . (3.60)

Including the estimates (3.60), (3.59) and (3.58) into (3.29) we arrive at∫ T

0

∫
ΩR

|u(t, x)|pψ(t, x)dtdx = CR
n
β
(
T 1−(α+2) p

p−1 + T 1−(α+1) p
p−1
)

+ CR

(
n
2−

p
p−1

)
1
β T 1−α p

p−1 .

(3.61)

First, we note that p < 1
γ implies that

1− α p

p− 1
< 0.

Therefore, the fact that

α
p

p− 1
< (α+ 1)

p

p− 1
< (α+ 2)

p

p− 1

together with
lim

T→+∞
ψ(t, x) = ϕ`1(x), (3.62)

allow us after taking the limit as T → +∞ in (3.61) to obtain∫ +∞

0

∫
ΩR

|u(t, x)|pϕ`1(x)dtdx = 0. (3.63)

Next, taking the limit as R→ +∞ in (3.63). Using the fact that lim
R→+∞

ϕ`1(x) = 1, we

get ∫ +∞

0

∫
Rn
|u(t, x)|pdtdx = 0.

This implies that u = 0 which is contradiction.
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2. ii. Subcase of p = 1
γ

In this case, the assumption

p <
n

n− 2
if n ≥ 3, (3.64)

is needed. First, we observe that (3.64) implies
n

2
− p

p− 1
< 0. (3.65)

Under these assumptions, remind our selves that α = 1−γ, then we verify easily that

1− α p

p− 1
= 0, 1− (α+ 1)

p

p− 1
= − 1

1− γ
< 0, (3.66)

and also

1− (α+ 2)
p

p− 1
= − 2p

p− 1
= − 2

1− γ
< 0.

Hence, taking the limit as T →∞ in (3.61) with the considerations (3.66) and (3.62)
we obtain ∫ ∞

0

∫
ΩR

|u(t, x)|pϕ`1(x)dtdx = CR

(
n
2−

p
p−1

)
1
β . (3.67)

Finally, one can remark that if n = 1, 2 then n
2 −

p
p−1 < 0 for all p > 1 and then by

taking the limit as R→∞ in (3.67), using the facts that β ∈ (0, 2) and

lim
R→+∞

ϕ`1(x) = 1,

one has ∫ ∞
0

∫
Rn
|u(t, x)|pdtdx = 0. (3.68)

This implies that u = 0 and this is a contradiction.
If n ≥ 3 then n

2 −
p
p−1 is negative then it is not hard to get (3.68) by letting R→∞

in (3.67), if we assume furthermore that (3.64) or equivalently (3.65) is satisfied. This
achieved the proof of Theorem 2.2. �
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Majorization problems for certain starlike
functions associated with the exponential
function

Hesam Mahzoon

Abstract. Let S∗e and S∗B denote the class of analytic functions f in the open unit
disc normalized by f(0) = 0 = f ′(0)−1 and satisfying, respectively, the following
subordination relations:

zf ′(z)

f(z)
≺ ez and

zf ′(z)

f(z)
≺ ee

z−1.

In this article, we investigate majorization problems for the classes S∗e and S∗B
without acting upon any linear or nonlinear operators.

Mathematics Subject Classification (2010): 30C45.

Keywords: Univalent, starlike, exponential function, majorization, subordination,
Bell numbers.

1. Introduction

Let H be the set of analytic functions f on the open unit disc

∆ = {z ∈ C : |z| < 1}
where C denotes the complex plane. Also let A be a subclass ofH that whose members
are normalized by the condition f(0) = 0 = f ′(0)−1. Let the functions f and g belong
to the class H and there exists a Schwarz function φ : ∆ → ∆ with the conditions
φ(0) = 0 and |φ(z)| < 1 such that f(z) = g(φ(z)). Then we say that f is subordinate
to g, written as f(z) ≺ g(z) or f ≺ g. It is clear that if f ≺ g, then

f(0) = g(0) and f(∆) ⊂ g(∆). (1.1)

Also, if g is univalent (one-to-one) in ∆, then f(z) ≺ g(z) iff the conditions (1.1)
hold true. The subclass of A consisting of all univalent functions f(z) in ∆ will be
denoted by U . A function f ∈ A is said to be starlike if f maps ∆ onto a domain

Received 22 September 2019; Accepted 04 February 2020.
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which is starlike with respect to origin. The class of starlike functions in U is denoted
S∗. Analytically, a function f ∈ A belongs to the class S∗ iff

Re

{
zf ′(z)

f(z)

}
> 0 (z ∈ ∆).

In 1992, Ma and Minda (see [15]) have introduced the class

S∗(ϕ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z)

}
where ϕ is analytic univalent function with Re{ϕ(z)} > 0 (z ∈ ∆) and normalized
by ϕ(0) = 1 and ϕ′(0) > 0. For special choices of ϕ, the class S∗(ϕ) becomes to the
well-known subclasses of the starlike functions. For example, the class

S∗((1 +Az)/(1 +Bz)) =: S∗[A,B] (−1 ≤ B < A ≤ 1)

was introduced by Janowski, see [8]. If we also let ϕ(z) := (1 + (1 − 2α)z)/(1 − z),
then the class S∗(ϕ) (0 ≤ α < 1) gives the well-known class of the starlike functions
of order α. We recall that a function f ∈ A is starlike of order α iff

Re

{
zf ′(z)

f(z)

}
> α (z ∈ ∆).

The family of all such functions is denoted by S∗(α). We put S∗(0) ≡ S∗. The family
S∗(α) for α ∈ [0, 1) is a subfamily of the univalent functions (e.g., see [7]) and the
function

Kα(z) :=
z

(1− z)2(1−α)
= z +

∞∑
n=2

cn(α)zn (z ∈ ∆, 0 ≤ α < 1),

where

cn(α) :=

∏n
k=2(k − 2α)

(n− 1)!
(n ≥ 2),

is the well-known extremal function for the class S∗(α).
In 2015, Mendiratta et al. [17] introduced the class S∗e as follows:

S∗e :=

{
f ∈ A :

zf ′(z)

f(z)
≺ ez =: ϕ0(z)

}
.

An extremal function for the class S∗e is

f1(z) := z exp

(∫ z

0

eζ − 1

ζ
dζ

)
= z + z2 +

3

4
z3 +

17

36
z4 + · · · .

This function f1 also plays the role extremal for many extremal problems. We notice
that the exponential function ϕ0(z) = ez has positive real part in ∆ and

ϕ0(∆) = {ζ ∈ C : | log ζ| < 1} =: Ω.

It is easy to see that Ω is symmetric with respect to the real axis, starlike with respect
to 1 and ϕ′0(0) > 0 (see Figure 1(a)). Thus we have

f ∈ S∗e ⇔
∣∣∣∣log

{
zf ′(z)

f(z)

}∣∣∣∣ < 1 (z ∈ ∆).
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For more details about the class S∗e one can refer to [17].
Motivated by the above defined classes, Kumar et al. [12] (see also [6]) defined the
class S∗B associated with the Bell numbers where

S∗B :=

{
f ∈ A :

zf ′(z)

f(z)
≺ ee

z−1 =: Q(z)

}
=: S∗(Q).

The function f2 defined by

f2(z) := z exp

(∫ z

0

Q(ζ)− 1

ζ
dζ

)
= z + z2 + z3 +

17

18
z4 +

245

288
z5 + · · · ,

belongs to the class S∗B and serve as an extremal function in many problems. We also
note that

Q(z) = ee
z−1 =

∞∑
n=0

Bn
zn

n!
= 1 + z + z2 +

5

6
z3 +

5

8
z4 + · · · (z ∈ ∆),

is starlike with respect to 1 (see Figure 1(b)) and its coefficients generate the Bell
numbers. For a brief survey on these numbers, readers may refer to [4, 3].

0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.0

0.5

1.0
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1 2 3 4 5
-3

-2

-1

0

1

2

3

(b)

Figure 1. (a): The boundary curve of ϕ0(∆) = exp(∆)
(b): The boundary curve of Q(∆) = exp(exp(∆)− 1)

Also, for more details about some another subclasses of the starlike functions
with various special cases of ϕ, see [10, 9, 11, 13, 14, 19, 20, 21].

The following theorem due to Carathéodory, see [5]:
Theorem A. If the function f ∈ H satisfies the conditions

|f(z)| ≤ 1 and f(0) = 0,

then |f ′(z)| ≤ 1 for |z| ≤
√

2− 1.
Theorem B (below) is a generalization of the Theorem A which was proved by Mac-
Gregor, see [16]. Indeed, by letting g(z) = z, Theorem B reduces to the Theorem A.
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Theorem B. If f(z) is majorized by g(z) in ∆ and g(0) = 0, then

max
|z|=r

|f ′(z)| ≤ max
|z|=r

|g′(z)|

for each number r in the interval [0,
√

2− 1].
We recall that a function f ∈ H is called to be majorized by g ∈ H written as

f(z)� g(z),

if there exists an analytic function ψ in ∆ and satisfying the following conditions

|ψ(z)| ≤ 1 and f(z) = ψ(z)g(z) (1.2)

for all z ∈ ∆. It should be noted that for the first time Mac-Gregor defined the
concept of majorization. Indeed, he has been studied majorization problem for the
class of starlike functions [16]. Recently, also many researchers have studied several
majorization problems for certain subclasses of analytic functions which are defined
by the concept of subordination, see for instance [1, 2, 25, 22, 23, 24].

The present paper aims to study majorization problems for the classes S∗e and S∗B
without acting upon any linear or nonlinear operators to the above function classes.

2. Main Results

The following lemma (see [18]) will be needed in our investigation.

Lemma 2.1. Let ψ(z) be analytic in ∆ and satisfying |ψ(z)| ≤ 1 for all z ∈ ∆. Then

|ψ′(z)| ≤ 1− |ψ(z)|2

1− |z|2
.

The first result of this section is continued in the following form.

Theorem 2.2. Let the function f be in the class A and g ∈ S∗e . If f(z) is majorized
by g(z) in ∆, then

max
|z|=r

|f ′(z)| ≤ max
|z|=r

|g′(z)|

for each number r in the interval [0, 0.323784] where r1 ≈ 0.323784 is the positive root
of the equation

1− r2 − 2rer = 0. (2.1)

Proof. Let f ∈ A and the function g belongs to the class S∗e . Then by definition of
the class S∗e we have

zg′(z)

g(z)
≺ ez,

or equivalently
zg′(z)

g(z)
= eφ(z) (z ∈ ∆), (2.2)

where φ is a Schwarz function. With a simple calculation and since |φ(z)| ≤ |z| (see
[7]), (2.2) implies that ∣∣∣∣ g(z)

g′(z)

∣∣∣∣ ≤ rer (|z| = r < 1). (2.3)
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By the assumption since f(z) � g(z) in ∆, thus there exists an analytic function ψ
in ∆ satisfying |ψ(z)| ≤ 1 such that

f(z) = ψ(z)g(z) (z ∈ ∆). (2.4)

Differentiating of both sides of (2.4) gives us

f ′(z) = ψ′(z)g(z) + ψ(z)g′(z) = g′(z)

(
ψ′(z)

g(z)

g′(z)
+ ψ(z)

)
. (2.5)

Now by (2.3), (2.5) and by Lemma 2.1 we get

|f ′(z)| ≤
(
|ψ(z)|+ 1− |ψ(z)|2

1− r2
× rer

)
|g′(z)|

=

(
γ +

1− γ2

1− r2
× rer

)
|g′(z)|,

where |ψ(z)| =: γ ∈ [0, 1]. We now define the function µ(γ, r) as follows

µ(γ, r) := γ +
1− γ2

1− r2
× rer.

It is enough to consider r1 as follows

r1 = max{r ∈ [0, 1) : µ(γ, r) ≤ 1,∀γ ∈ [0, 1]}.
Therefore

µ(γ, r) ≤ 1⇔ λ(γ, r) ≥ 0,

where λ(γ, r) := 1 − r2 − (1 + γ)rer. We see that λ(γ, r) is decreasing function with
respect to γ and gets its minimum value in γ = 1, namely

min{λ(γ, r) : γ ∈ [0, 1]} = λ(1, r) = λ(r),

where λ(r) := 1−r2−2rer. On the other hand, since λ(0) = 1 > 0 and λ(1) = −2e < 0,
thus there exists a r1 such that λ(r) ≥ 0 for all r ∈ [0, r1] where r1 is the smallest
positive root of the Eq. (2.1). �

Since the identity function g(z) = z belongs to the class S∗e , therefore we have
the following result.

Corollary 2.3. If a function f ∈ A satisfies the condition

|f(z)| < 1 (z ∈ ∆),

then |f ′(z)| ≤ 1 for |z| ≤ 0.323784.

The next result gives a same result for the class S∗B .

Theorem 2.4. Let the function f be in the class A and g ∈ S∗B. If f(z) is majorized
by g(z) in ∆, then

max
|z|=r

|f ′(z)| ≤ max
|z|=r

|g′(z)| (0 ≤ r ≤ r2) (2.6)

where r2 is the smallest positive root of the equation

(1− r2)ee
−r−1 − 2r = 0. (2.7)
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Proof. Let f belong to the class A. If g ∈ S∗B then the following subordination relation
holds true:

zg′(z)

g(z)
≺ ee

z−1,

or equivalently
zg′(z)

g(z)
= ee

φ(z)−1 (z ∈ ∆), (2.8)

where φ is a Schwarz function. With a simple calculation and since |φ(z)| ≤ |z|, (2.8)
yields that ∣∣∣∣ g(z)

g′(z)

∣∣∣∣ ≤ r

ee−r−1
(|z| = r < 1). (2.9)

On the other hand we have f(z) � g(z) in ∆. Therefore by (2.4), (2.5), (2.9) and
Lemma 2.1 we get

|f ′(z)| ≤
(
|ψ(z)|+ 1− |ψ(z)|2

1− r2
× r

ee−r−1

)
|g′(z)|

=

(
γ +

1− γ2

1− r2
× r

ee−r−1

)
|g′(z)|,

where |ψ(z)| =: γ ∈ [0, 1]. We define

η(γ, r) := γ +
1− γ2

1− r2
× r

ee−r−1
.

Therefore we are looking for r2 such that (2.6) holds. It is sufficient to consider r2 as
follows:

r2 = max{r ∈ [0, 1) : η(γ, r) ≤ 1,∀γ ∈ [0, 1]}.
Thus

η(γ, r) ≤ 1⇔ θ(γ, r) ≥ 0,

where θ(γ, r) := (1− r2)(ee
−r−1)− r(1 + γ). We see that ∂θ

∂γ = −r < 0. In conclusion,

θ(γ, r) gets its minimum value in γ = 1, namely

min{θ(γ, r) : γ ∈ [0, 1]} = θ(1, r) = θ(r),

where θ(r) := (1 − r2)(ee
−r−1) − 2r. We have θ(0) = 1 > 0 and θ(1) = −2 < 0. So

there exists a r2 such that θ(r) ≥ 0 for all r ∈ [0, r2] where r2 is the smallest positive
root of the Eq. (2.7). This completes the proof. �

If we let g(z) = z in the above Theorem 2.4, then we get the following.

Corollary 2.5. If a function f ∈ A satisfies the condition

|f(z)| < 1 (z ∈ ∆),

then |f ′(z)| ≤ 1 for all z which |z| ≤ r2, where r2 is the smallest positive root of the
Eq. (2.7).

Remark 2.6. Figure 2 shows the roots r1 and r2 in Theorem 2.2 and Theorem 2.4,
respectively, are approximately equal.
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Figure 2. graph of Eq. (2.1) (left), graph of Eq. (2.7) (centre), graph
of both Eqs. (2.1) and (2.7) (right)
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[1] Altintaş, O., Özkan, Ö., Srivastava, H.M., Majorization by starlike functions of complex
order, Complex Variables Theory Appl., 46(2001), no. 3, 207-218.
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[10] Kargar, R., Ebadian A., Sokó l, J., On Booth lemiscate and starlike functions, Anal.
Math. Phys., 9(2019), no. 1, 143-154.
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Abstract. In this paper, we investigate bounds of the coefficients for subclass of
analytic and bi-univalent functions. The results presented in this paper would
generalize and improve some recent works and other authors.
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1. Introduction

Let A be a class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, let S denote
the class of functions f ∈ A which are univalent in U.

For f(z) defined by (1.1) and h(z) defined by

h(z) = z +

∞∑
n=2

bnz
n,

the Hadamard product (f ∗ h)(z) of the functions f(z) and h(z) defined by

(f ∗ h)(z) = z +

∞∑
n=2

anbnz
n,

In 2007, Srivastava and Attiya [21] (see also Rǎducanu and Srivastava [18] and
Prajapat and Goyal [17]) for the class A introduced and investigated linear operator

Received 19 December 2019; Accepted 08 January 2020.
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J bµ : A → A that defined in terms of the Hadamard product by

J bµf(z) = z +

∞∑
k=2

Θkakz
k,

where

Θk =

∣∣∣∣(1 + b

k + b

)µ∣∣∣∣ ,
and (throughout this paper unless otherwise mentioned ) the parameters µ, b are
considered as µ ∈ C and b ∈ C \ {0,−1,−2, · · ·}, (see for more details [20]).

Remark 1.1. (1) For µ = 1 and b = υ (υ > −1), we get generalized Libera-Bernardi
integral operator [19];

(2) For µ = σ (σ > 0) and b = 1, we get Jung-Kim-Srivastava integral operator [12].

For each f ∈ S, the Koebe one-quarter theorem [9] ensures that the image of U
under f contains a disk of radius 1

4 . Hence every function f ∈ S has an inverse f−1,
which is defined by

f−1(f(z)) = z (z ∈ U),

and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥ 1

4

)
,

where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in
U. Let Σ denote the class of bi-univalent functions in U given by (1.1).

Recently many researchers have introduced and investigated several interesting
subclasses of the bi-univalent function class Σ and they have found non-sharp esti-
mates on the first two Taylor-Maclaurin coefficients |a2| and |a3| and other problems,
see for example, [3, 2, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 22, 23, 24].

For two functions f and g that are analytic in U, we say that the function f is
subordinate to g and write f(z) ≺ g(z), if there exists a Schwarz function ω, that is
analytic in U with ω(0) = 0 and |ω(z)| < 1 such that f(z) = g(ω(z)) for all z ∈ U.

In particular, if the function g is univalent in U, then f(z) ≺ g(z) if and only if
f(0) = g(0) and f(U) ⊆ g(U).

In this work, we obtain estimates of coefficients for a subclass of bi-univalent
functions considered by Selvaraj et al. [20]. The results presented in this paper would
generalize and improve some recent works and other authors.
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2. The subclass Sµ,bΣ,t(γ, λ, φ)

Throughout this paper, we assume that φ is an analytic function with positive
real part in the unit disk U, satisfying φ(0) = 1, φ′(0) > 0 and symmetric with respect
to the real axis. Such a function has series expansion of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · (B1 > 0), (2.1)

Let that u(z) and v(z) are Schwarz function in U with

u(0) = v(0) = 0, |u(z)| < 1, |v(z)| < 1

and suppose that

u(z) =

∞∑
n=1

pnz
n and v(z) =

∞∑
n=1

qnz
n (z ∈ U). (2.2)

Then [16, p. 172]

|p1| ≤ 1, |p2| ≤ 1− |p1|2, |q1| ≤ 1, |q2| ≤ 1− |q1|2. (2.3)

By (2.1), we get

φ(u(z)) = 1 +B1p1z + (B1p2 +B2p
2
1)z2 + · · · (z ∈ U) (2.4)

and

φ(v(w)) = 1 +B1q1w + (B1q2 +B2q
2
1)w2 + · · · (w ∈ U). (2.5)

In 2014, Selvaraj et al. [20] introduced subclass of Σ and obtained estimates on the
coefficients |a2| and |a3| for functions in this subclass as follows:

Definition 2.1. [20] A function f ∈ Σ given by (1.1) is said to be in the class

Sµ,bΣ,t(γ, λ, φ) if the following conditions are satisfied:

1 +
1

γ

(
[(1− t)z]1−λ(J bµf(z))′

[J bµf(z)− J bµf(tz)]1−λ
− 1

)
≺ φ(z),

and

1 +
1

γ

(
[(1− t)w]1−λ(J bµg(w))′

[J bµg(w)− J bµg(tw)]1−λ
− 1

)
≺ φ(w),

where |t| ≤ 1 (t 6= 1); γ ∈ C\{0}; λ ≥ 0; z, w ∈ U and g is given by (1.2).

Theorem 2.2. [20] Let the function f(z) given by (1.1) be in the class Sµ,bΣ,t(γ, λ, φ).
Then

|a2| ≤
|γ|B1

√
2B1√

|γB2
1Λ(λ, t)Ξ(λ, t)− 2(B2 −B1)[Λ(λ, t) + 2]2Θ2

2 + 2γB2
1Υ(λ, t)Θ3|

(2.6)

and

|a3| ≤
B1|γ|

Υ(λ, t)Θ3
+

(
B1|τ |

[Λ(λ, t) + 2]Θ2

)2

, (2.7)

where
Λ(λ, t) = (λ− 1)(1 + t), Υ(λ, t) = [(λ− 1)(1 + t+ t2) + 3]
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and
Ξ(λ, t) = [(λ− 2)(1 + t) + 4].

3. Coefficient estimates

In the section, we get that the following theorem which is an refinement of
inequalities (2.6) and (2.7).

Theorem 3.1. Let the function f(z) given by (1.1) be in the class Sµ,bΣ,t(γ, λ, φ), |t| ≤ 1

(t 6= 1), γ ∈ C\{0} and λ ≥ 0. Then

|a2| ≤
|γ|B1

√
2B1√

2B1[Λ(λ, t) + 2]2Θ2
2 + |γB2

1Λ(λ, t)Ξ(λ, t)− 2B2[Λ(λ, t) + 2]2Θ2
2 + 2γB2

1Υ(λ, t)Θ3|
and

|a3| ≤


|τ |B1

Υ(λ, t)Θ3
B1 ≤

[(λ− 1)(1 + t) + 2]2Θ2
2

|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]

Φ(Θ1,Θ2, λ, t)

Ψ(Θ1,Θ2, λ, t)Υ(λ, t)Θ3
B1 >

[(λ− 1)(1 + t) + 2]2Θ2
2

|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]
.

where

Φ(Θ1,Θ2, λ, t) =|τ |B1

∣∣γB2
1Λ(λ, t)Ξ(λ, t)− 2B2[Λ(λ, t) + 2]2Θ2

2 + 2γB2
1Υ(λ, t)Θ3

∣∣
+ 2|γ|2Θ3Υ(λ, t)B3

1 ,

and

Ψ(Θ1,Θ2, λ, t) =2B1[Λ(λ, t) + 2]2Θ2
2

+ |γB2
1Λ(λ, t)Ξ(λ, t)− 2B2[Λ(λ, t) + 2]2Θ2

2 + 2γB2
1Υ(λ, t)Θ3|.

Proof. Let f ∈ Sµ,bΣ,t(γ, λ, φ) and g = f−1. Then there are analytic functions u, v :

U→ U, with u(0) = v(0) = 0, given by (2.2) such that

1 +
1

γ

(
[(1− t)z]1−λ(J bµf(z))′

[J bµf(z)− J bµf(tz)]1−λ
− 1

)
= φ(u(z)), (3.1)

and

1 +
1

γ

(
[(1− t)w]1−λ(J bµg(w))′

[J bµg(w)− J bµg(tw)]1−λ
− 1

)
= φ(v(w)). (3.2)

From (2.4), (2.5), (3.1) and (3.2), we obtain

[(λ− 1)(1 + t) + 2]Θ2a2 = γB1p1, (3.3)

[(λ− 1)(1 + t+ t2) + 3]Θ3a3 +
1

2
(λ− 1)(1 + t)[(λ− 2)(1 + t) + 4]Θ2

2a
2
2

=γ[B1p2 +B2p
2
1], (3.4)

− [(λ− 1)(1 + t) + 2]Θ2a2 = γB1q1, (3.5)
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and

[(λ− 1)(1 + t+ t2) + 3]Θ3(2a2
2 − a3)

+
1

2
(λ− 1)(1 + t)[(λ− 2)(1 + t) + 4]Θ2

2a
2
2 = γ[B1q2 +B2q

2
1 ]. (3.6)

From (3.3) and (3.5), we get

p1 = −q1. (3.7)

Adding (3.4) and (3.6), and using (3.7), we have(
(λ− 1)(1 + t)[(λ− 2)(1 + t) + 4]Θ2

2 + 2Θ3[(λ− 1)(1 + t+ t2) + 3]
)
a2

2

− 2γB2p
2
1 = γB1(p2 + q2). (3.8)

From (3.3), we have(
γB2

1{(λ− 1)(1 + t)[(λ− 2)(1 + t) + 4]Θ2
2 + 2Θ3[(λ− 1)(1 + t+ t2) + 3]

}
−2B2[(λ− 1)(1 + t) + 2]2Θ2

2)a2
2 = γ2B3

1(p2 + q2).

By (2.3) and (3.3), we get

|
(
γB2

1{(λ− 1)(1 + t)[(λ− 2)(1 + t) + 4]Θ2
2 + 2Θ3[(λ− 1)(1 + t+ t2) + 3]

}
− 2B2[(λ− 1)(1 + t) + 2]2Θ2

2)a2
2| ≤ |τ |2B3

1(|p2|+ |q2|)
≤2|γ|2B3

1(1− |p1|2)

=2|γ|2B3
1 − 2B1[(λ− 1)(1 + t) + 2]2Θ2

2|a2|2.

Therefore,

|a2| ≤ (3.9)

≤ |γ|B1

√
2B1√

2B1[Λ(λ, t) + 2]2Θ2
2 + |γB2

1Λ(λ, t)Ξ(λ, t)− 2B2[Λ(λ, t) + 2]2Θ2
2 + 2γB2

1Υ(λ, t)Θ3|
,

where

Λ(λ, t) = (λ− 1)(1 + t), Υ(λ, t) = [(λ− 1)(1 + t+ t2) + 3]

and

Ξ(λ, t) = [(λ− 2)(1 + t) + 4].

Next, in order to find the bound on the coefficient |a3|, by subtracting (3.6) from
(3.4), and using (3.7), we get

2[(λ− 1)(1 + t+ t2) + 3]Θ3a3 = 2Θ3[(λ− 1)(1 + t+ t2) + 3]a2
2

+ τB1(p2 − q2). (3.10)

Using (2.3) and (3.7), we have

2[(λ− 1)(1 + t+ t2) + 3]Θ3|a3|
≤ |γ|B1(|p2|+ |q2|) + 2Θ3[(λ− 1)(1 + t+ t2) + 3]|a2|2

≤ 2|γ|B1(1− |p1|2) + 2Θ3[(λ− 1)(1 + t+ t2) + 3]|a2|2.



744 Mostafa Jafari, Ahmad Motamednezad and Ebrahim Analouei Adegani

From (3.3), we get

|γ|B1[(λ− 1)(1 + t+ t2) + 3]Θ3|a3|
≤
[
|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]B1 − [(λ− 1)(1 + t) + 2]2Θ2

2

]
|a2|2 + |γ|2B2

1 .

From (3.9), for
[
|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]B1 − [(λ− 1)(1 + t) + 2]2Θ2

2

]
> 0 we

have

|γ|B1[(λ− 1)(1 + t+ t2) + 3]Θ3|a3|
≤
[
|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]B1 − [(λ− 1)(1 + t) + 2]2Θ2

2

]
× 2|γ|2B3

1

2B1[Λ(λ, t) + 2]2Θ2
2 + |γB2

1Λ(λ, t)Ξ(λ, t)− 2B2[Λ(λ, t) + 2]2Θ2
2 + 2γB2

1Υ(λ, t)Θ3|
+ |γ|2B2

1 .

Therefore,

|a3| ≤
[
|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]B1 − [(λ− 1)(1 + t) + 2]2Θ2

2

]
× 2|γ|B2

1

Ψ(Θ1,Θ2, λ, t)[(λ− 1)(1 + t+ t2) + 3]Θ3
+

|γ|B1

[(λ− 1)(1 + t+ t2) + 3]Θ3
,

where

Ψ(Θ1,Θ2, λ, t) =2B1[Λ(λ, t) + 2]2Θ2
2

+ |γB2
1Λ(λ, t)Ξ(λ, t)− 2B2[Λ(λ, t) + 2]2Θ2

2 + 2γB2
1Υ(λ, t)Θ3|.

Consequently,

|a3|≤


|γ|B1

[(λ− 1)(1 + t+ t2) + 3]Θ3
B1≤

[(λ− 1)(1 + t) + 2]2Θ2
2

|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]

Φ(Θ1,Θ2, λ, t)

Ψ(Θ1,Θ2, λ, t)[(λ− 1)(1 + t+ t2) + 3]Θ3
B1>

[(λ− 1)(1 + t) + 2]2Θ2
2

|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]
,

where

Φ(Θ1,Θ2, λ, t) = |τ |B1

∣∣γB2
1Λ(λ, t)Ξ(λ, t)− 2B2[Λ(λ, t) + 2]2Θ2

2 + 2γB2
1Υ(λ, t)Θ3

∣∣
+ 2|γ|2Θ3[(λ− 1)(1 + t+ t2) + 3]B3

1 .

This completes the proof. �

Remark 3.2. Theorem 3.1 is an improvement of the estimates obtained by Selvaraj
et al. [20] in Theorem 2.2. For the coefficient |a2|, it is clear that

|γ|B1

√
2B1√

2B1[Λ(λ, t) + 2]2Θ2
2 + |γB2

1Λ(λ, t)Ξ(λ, t)− 2B2[Λ(λ, t) + 2]2Θ2
2 + 2γB2

1Υ(λ, t)Θ3|

≤ |γ|B1

√
2B1√

|γB2
1Λ(λ, t)Ξ(λ, t)− 2(B2 −B1)[Λ(λ, t) + 2]2Θ2

2 + 2γB2
1Υ(λ, t)Θ3|

.

On the other hand, for the coefficient |a3|, we make the following cases:
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(i) For B1 ≤
[(λ− 1)(1 + t) + 2]2Θ2

2

|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]
, it is clear that

|γ|B1

Υ(λ, t)Θ3
≤ B1|γ|

Υ(λ, t)Θ3
+

(
B1|τ |

[Λ(λ, t) + 2]Θ2

)2

.

(ii) For B1 >
[(λ− 1)(1 + t) + 2]2Θ2

2

|γ|Θ3[(λ− 1)(1 + t+ t2) + 3]
, it is clear that

Φ(Θ1,Θ2, λ, t)

Ψ(Θ1,Θ2, λ, t)Υ(λ, t)Θ3
≤ B1|γ|

Υ(λ, t)Θ3
+

(
B1|τ |

[Λ(λ, t) + 2]Θ2

)2

.

Remark 3.3. If we set λ = 0 in Theorem 3.1, then we get an improvement of the
estimates obtained by Selvaraj et al. [20, Corollary 2.1].

Remark 3.4. If we set λ = 1 in Theorem 3.1, then we get an improvement of the
estimates obtained by Selvaraj et al. [20, Corollary 2.2].

Remark 3.5. If J bµf(z) be the identity map and λ = 0 in Theorem 3.1, then we get
an improvement of the estimates obtained by Selvaraj et al. [20, Corollary 2.3].

Remark 3.6. If J bµf(z) be the identity map and λ = 1 in Theorem 3.1, then we get
an improvement of the estimates obtained by Selvaraj et al. [20, Corollary 2.4].

Remark 3.7. If J bµf(z) be the identity map and γ = 1, t = 0 in Theorem 3.1, then
we get an improvement of the estimates obtained by Deniz [8, Theorem 2.8].

Remark 3.8. If J bµf(z) be the identity map and γ = 1, λ = 1 in Theorem 3.1 is an
improvement of the estimates obtained by Ali et al. in [3, Theorem 2.1].

Remark 3.9. If we take

φ(z) =
1 +Az

1 +Bz
= 1 + (A−B)z + (B −A)Bz2 + · · · (−1 ≤ B < A ≤ 1, z ∈ U)

and

ϕ(z) =

(
1 + z

1− z

)α
= 1 + 2αz + 2α2z2 + · · · (0 < α ≤ 1, z ∈ U),

which gives B1 = A − B, B2 = (B − A)B and B1 = 2α, B2 = 2α2, in Theorem
3.1, then we can deduce interesting results analogous, respectively. Also, for suitable
choices the parameter µ and b in Theorems 3.1 and some Remarks above we have
an improvement of results involving Libera-Bernardi integral operator [19] and Jung-
Kim-Srivastava integral operator [12].

Acknowledgments. The authors thank from the Najafabad Branch, Islamic Azad Uni-
versity for their financial support.
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Existence for stochastic sweeping process
with fractional Brownian motion

Tayeb Blouhi, Mohamed Ferhat and Safia Benmansour

Abstract. This paper is devoted to the study of a convex stochastic sweeping
process with fractional Brownian by time delay. The approach is based on dis-
cretizing stochastic functional differential inclusions.
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1. Introduction

The so-called sweeping process is a particular differential inclusion of the general form

−x′(t) ∈ NC(t)(x(t)) a, e. t ∈ [0, T ] (1.1)

x(0) ∈ C(0) (1.2)

where C(t) is a convex time dependance set,and NC(t)(x(t)) is the normal cone to
C(t) at x(t).The sweeping process, introduced by Moreau in the early 1970s, and
extensively studied by himself and other authors (see, e.g., [2, 7, 8, 5]).These models
prove to be quite useful in elastoplasticity, non smooth mechanics, convex optimiza-
tion, mathematical economics, queuing theory, etc. In this paper, we propose a simple
extension of the sweeping process. More precisely, We consider the problem formally

Received 28 November 2019; Accepted 17 January 2020.



750 Tayeb Blouhi, Mohamed Ferhat and Safia Benmansour

expressed by

−dx(t) ∈ NC1(t)(x(t))dt+G1(t, xt, yt)dB
H1 a, e. t ∈ J := [0, T ]

−dy(t) ∈ NC2(t)(y(t))dt+G2(t, xt, yt)dB
H2 a, e. t ∈ J := [0, T ]

x(t) = φ(t), t ∈ [−r, 0], x(0) ∈ C1(0)

y(t) = φ(t), t ∈ [−r, 0], y(0) ∈ C2(0)

(1.3)

where C1(t), C2(t) is convex for all t, X is a real separable Hilbert space with inner
product 〈·, ·〉 induced by norm ‖·‖, Gj : M2([−r, 0], X)×M2([−r, 0], X)→ L0

QHj
(Y,X)

are given functions. Here, L0
QHj

(Y,X) denotes the space of all QHj
-Hilbert-Schmidt

operators from Y intoX,BHj is sequence of mutually independent fractional Brownian
motions with H1 6= H2 i.e (BH1 6= BH2) for each j = 1, 2 , with Hurst parameter
Hj >

1
2 . Here y(·, ·) : [−r, T ]×Ω→ X, then for any t ≥ 0, yt(·, ·) : [−r, 0]×Ω→ X is

given by:

yt(θ, ω) = y(t+ θ, ω), for θ ∈ [−r, 0], ω ∈ Ω.

Here yt(·) represents the history of the state from time t− r, up to the present time
t. Let M2([−r, 0], X) be the following space defined by

M2([−r, 0], X) =
{
φ, φ : [−r, 0]× Ω→ X, φ, φ ∈ C([−r, 0], L2(Ω, X))},

endowed with the norm

||φ(t)||M2
F0

=

∫ 0

−r
|φ(t)|2dt

Now, for a given T > 0, we define
M2([−r, T ], X) = y : [−r, T ]× Ω→ X, φ, φ ∈ C([−r, T ], L2(Ω, X)) and

sup
t∈[0,T ]

E(|y(t)|2) <∞,
∫ 0

−r
|φ(t)|2dt <∞.

Endowed with the norm

‖y‖M2
Fb

= sup
−r≤s≤T

(E‖y(s)‖2)
1
2 .

Random differential and integral equations play an important role in characterizing
many social, physical, biological and engineering problems; see for instance the mono-
graphs by Da Prato and Zabczyk [3], Gard [4],Sobzyk [10] and Tsokos and Padgett
[11]. For example, a stochastic model for drug distribution in a biological system was
described by Tsokos and Padgett [11] to a closed system with a simplified heat, one
organ or capillary bed, and re-circulation of a blood with a constant rate of flow, where
the heart is considered as a mixing chamber of constant volume. For the basic theory
concerning stochastic differential equations see the monographs by Bharucha-Reid [1],
Mao[6], Øksendal[9], Tsokos and Padgett [11].

This paper is organized as follows. In Section 2 and 3, we recall some definitions
and results that will be used in all the sequel. Section 4 is devoted to the study of the
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existence problem of (1.3).In Section 5, we restrict our attention to the case when the
perturbation with F .

2. Basic definitions of stochastic calculus

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.Actually we will borrow them from [?].Let (Ω,F ,P)
be a complete probability space with a filtration (F = Ft)t≥0 satisfying the usual
conditions (i.e. right continuous and F0 containing all P-null sets).

For a stochastic process x(·, ·) : [0, T ] × Ω → X we will write x(t) (or simply x
when no confusion is possible) instead of x(t, ω).

Definition 2.1. GivenH1, H2 ∈ (0, 1),H1 6= H2 a continuous centered Gaussian process
BH is said to be a two-sided one-dimensional fractional Brownian motion (fBm) with
Hurst parameter Hj ,j = 1, 2 if its covariance function RHj (t, s) = E[BHj (t))BHj (s)]
satisfies

RHj
(t, s) =

1

2
(|t|2Hj + |s|2Hj − |t− s|2Hj ) t, s ∈ [0, T ].

It is known that BH(t) with Hj >
1
2 admits the following Volterra representation

BHj (t) =

∫ t

0

KHj
(t, s)dW (s) (2.1)

where W is a standard Brownian motion given by

W (t) = BHj ((K∗Hj
)−1ξ[0,t]),

and the Volterra kernel the kernel K(t, s) is given by

KHj (t, s) = cHjs
1/2−Hj

∫ t

s

(u− s)Hj− 3
2

(u
s

)Hj− 1
2

du, t ≥ s,

where cHj =
√

Hj(2Hj−1)

β(2Hj−2,Hj− 1
2 )

and β(·, ·) denotes the Beta function, K(t, s) = 0 if

t ≤ s, and it holds

∂KHj

∂t
(t, s) = cH

(
t

s

)Hj− 1
2

(t− s)Hj− 3
2 ,

and the kernel K∗Hj
is defined as follows. Denote by E the set of step functions on

[0, T ]. Let H be the Hilbert space defined as the closure of E with respect to the scalar
product

〈χ[0,t], χ[0,s]〉H = RHj
(t, s),

and consider the linear operator K∗Hj
from E to L2([0, T ]) defined by,

(K∗Hj
φj)(t) =

∫ T

s

φj(t)
∂KHj

∂t
(t, s)dt.

Notice that,

(K∗Hj
χ[0,t])(s) = KHj

(t, s)χ[0,t](s).
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The operator K∗Hj
is an isometry between E and L2([0, T ]) which can be extended to

the Hilbert space H. In fact, for any s, t ∈ [0, T ] we have

〈K∗Hj
χ[0,t],K

∗
Hj
χ[0,t]〉L2([0,T ]) = 〈χ[0,t], χ[0,s]〉H = RHj

(t, s).

In addition, for any φj ∈ H,∫ T

0

φj(s)dBHj (s) =

∫ T

0

(K∗Hj
φj)(s)dW (s),

if and only if K∗Hj
φ ∈ L2([0, T ]). Next we are interested in considering an fBm with

values in a Hilbert space and giving the definition of the corresponding stochastic
integral.

Definition 2.2. An Ft-adapted process φj on [0, T ]×Ω→ X is an elementary or simple
process if for a partition ψ = {t̄0 = 0 < t̄1 < . . . < t̄n = T} and (Ft̄i)-measurable

X-valued random variables (φjt̄i)1≤i≤n, φt satisfies

φjt (ω) =

n∑
i=1

φji (ω)χ(t̄i−1,t̄i](t), for 0 ≤ t ≤ T, ω ∈ Ω.

The Itô integral of the simple process φj is defined as

IHj
(φj) =

∫ T

0

φj(s)dBHj (s) =

n∑
i=1

φj(t̄i)(B
Hj

l (t̄i)−B
Hj

l (t̄i−1)), (2.2)

whenever φjt̄i ∈ L
2(Ω,Ft̄i ,P, X) for all i ≤ n.

Let (X, 〈·, ·〉, |·|X), (Y, 〈·, ·〉, |·|Y ) be separable Hilbert spaces. Let L(Y,X) denote
the space of all linear bounded operators from Y into X. Let en, n = 1, 2, . . . be a
complete orthonormal basis in Y and QHj

∈ L(Y,X) be an operator defined by

QHjen = λjnen with finite trace trQHj =
∑∞
n=1 λ

j
n < ∞ where λjn, n = 1, 2, . . ., are

non-negative real numbers. Let (β
Hj
n )n∈N be a sequence of two-sided one-dimensional

standard fractional Brownian motions mutually independent on (Ω,F ,P). If we define
the infinite dimensional fBm on Y with covariance QHj as

BHj (t) =

∞∑
n=1

√
λnβ

Hj
n (t)en, (2.3)

then it is well defined as an Y -valued QHj
-cylindrical fractional Brownian motion (see

[?]) and we have

E〈βHj

l (t), x〉〈βHk (s), y〉 = RHlk
(t, s)〈QHj

(x), y〉, x, y ∈ Y and s, t ∈ [0, T ]

such that

RHj
lk

=
1

2
{| t |2Hj + | s |2Hj + | t− s |2Hj}δlk t, s ∈ [0, T ],

where

δlj =

{
1 k = l,
0, k 6= l.
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In order to define Wiener integrals with respect to a QHj
− fBm, we introduce the

space L0
QHj

:= L0
QHj

(Y,X) of all QHj−Hilbert-Schmidt operators ϕj : Y −→ X. We

recall that ϕj ∈ L(Y,X) is called a QHj−Hilbert-Schmidt operator, if

‖ϕj‖2L0
QHj

= ‖ϕQ1/2
Hj
‖2HS = tr(ϕjQϕ

∗
j ) <∞.

Definition 2.3. Let φj(s), s ∈ [0, T ], be a function with values in L0
QHj

(Y,X). The

Wiener integral of φj with respect to fBm given by (2.3) is defined by∫ T

0

φj(s)dBHj (s) =

∞∑
n=1

∫ t

0

√
λnφ

j(s)endβ
Hj
n

=

∞∑
n=1

∫ T

0

√
λnK

∗
Hj

(φjen)(s)dβn. (2.4)

Notice that if
∞∑
n=1

‖φQ1/2en‖L1/Hj ([0,T ];X)
<∞, (2.5)

the next result ensures the convergence of the series in the previous definition. It can
be proved by similar arguments to those used to prove Lemma 2.4 in Caraballo et al.
[?].

Lemma 2.4. For any φj : [0, T ] → L0
QHj

(Y,X) such that (2.5) holds, and for any

α, β ∈ [0, T ] with α > β, for each j = 1, 2

E

∣∣∣∣∣
∫ β

α

φj(s)dBHj (s)

∣∣∣∣∣
2

X

≤ c2(Hj)Hj(2Hj − 1)(α− β)2Hj−1
∞∑
n=1

∫ β

α

∣∣∣φj(s)Q1/2en

∣∣∣2
X
ds.

(2.6)
where c2(Hj) is a constant depending on Hj. If, in addition,

∞∑
n=1

|φjQ1/2en|X is uniformly convergent for t ∈ [0, T ],

then,

E

∣∣∣∣∣
∫ β

α

φj(s)dBHj (s)

∣∣∣∣∣
2

X

≤ c2(Hj)Hj(2Hj−1)(α−β)2Hj−1

∫ β

α

∥∥φj(s)∥∥2

L0
Q

Hj

ds. (2.7)

3. Nonsmooth analysis

Let x, y ∈ X; the projection of x,y into Cj ⊂ X is the set

Proj(y, Cj) = {z ∈ Cj : d(z, Cj) = ||z − y||}.

This set is nonempty if, for example, Cj is weakly closed.Let Cj be a closed
subset of space X;and let x, y ∈ Ci: We say that a vector v ∈ X is a proximal normal
to Cj at z if v = y− z for some y ∈ X with z ∈ Proj(y, Cj). We denote by Np(z, Cj).
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the normal cone. One can show that η ∈ Np(y, Cj) if and only if there exists M such
that the following proximal normal inequality holds,

〈η, z − y〉 ≤M ||z − y||,

for all z ∈ Cj . (In general, M will depend on x). On the other hand

Np(z, Cj) =

∞⋃
n=1

{
v ∈ X : d(y +

v

n
) =
||v||
n

}
.

This cone is convex, but in general not closed . An useful characterization of the
proximal normal cone is the following (see,e.g., [?], Proposition 1.1.5(a)):

Np(z, Cj) = ∪µ>0{v ∈ X : 〈v, a− z〉 ≤ µ||z − y||2, a ∈ Cj}.

If Cj is closed and convex then we have

z ∈ Np(z, Cj)⇐⇒ y ∈ Cj and 〈z, y〉 = σ(z, Ci)⇐⇒ y ∈ Cj , x ∈ ∂ϕCj (y)

where σ is the support function of a subset Cj of X, ∂ϕCj is the subdifferential in
the sense of convex analysis and Ci is the indicator function of a subset Cj of X

∂ϕCj
(y) =

 0, if y ∈ Cj ,

∅, if y ∈ Cj .

We define the Bouligand cone by

TCj (x) =
{
v ∈ X : lim

h→0
inf

d(z + hv,Cj)

h

}
=
⋂
ε>0

⋂
δ>0

⋃
0<h<δ

(Cj − z
h

+ εB(0, 1)
)
.

For more informations about nonsmooth analysis we see the monographs of Clarke
and Ledyaev et al [?] and Clarke [?].

3.1. Multi-valued analysis

Pcl(X) = {y ∈ P(X) : y closed },
Pb(X) = {y ∈ P(X) : y bounded },
Pc(X) = {y ∈ P(X) : y convex },
Pcp(X) = {y ∈ P(X) : y compact }.

Consider Hd : P(X)× P(X) −→ Rn+ ∪ {∞} defined by

Hd(A,B) :=

Hd1(A,B)
...

Hdn(A,B)


Let (X, d) be a generalized metric space with

d(x, y) :=

d1(x, y)
...

dn(x, y)
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Notice that d is a generalized metric space on X if and only if di, i = 1, .., n are
metrics on X,

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then, (Pb,cl(X), Hd) is a met-
ric space and (Pcl(X), Hd) is a generalized metric space.

A multivalued map F : X −→ P(X) is convex (closed) valued if F (y) is convex
(closed) for all y ∈ X, F is bounded on bounded sets if F (B) =

⋃
y∈B F (y) is bounded

in X for all B ∈ Pb(X). F is called upper semi-continuous (u.s.c. for short) on X if
for each y0 ∈ X the set F (y0) is a nonempty, closed subset of X, and for each open
set U of X containing F (y0), there exists an open neighborhood V of y0 such that
F (V) ∈ U . F is said to be completely continuous if F (B) is relatively compact for
every B ∈ Pb(X).

If the multivalued map F is completely continuous with nonempty compact
valued, then F is u.s.c. if and only if F has a closed graph, i.e., xn −→ x∗, yn −→ y∗,
yn ∈ F (xn) imply y∗ ∈ F (x∗).

A multi-valued map F : J −→ Pcp,c is said to be measurable if for each y ∈ X,
the mean-square distance between y and F (t) is measurable.

Definition 3.1. The set-valued map F : J × X × X → P(X × X) is said to be L2-
Carathéodory if

(i). t 7→ F (t, v) is measurable for each v ∈ X ×X;
(ii). v 7→ F (t, v) is u.s.c. for almost all t ∈ J ;
(iii). for each q > 0, there exists hq ∈ L1(J,R+) such that

‖F (t, v)‖2 := sup
f∈F (t,v)

‖f‖2 ≤ hq(t), for all ‖v‖2 ≤ q and for a.e. t ∈ J.

We denote the graph of G to be the set gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)}.

Lemma 3.2. [?] If G : X → Pcl(Y ) is u.s.c., then gr(G) is a closed subset of X × Y .
Conversely, if G is locally compact and has nonempty compact values and a closed
graph, then it is u.s.c.

Lemma 3.3. [?] If G : X → Pcp(Y ) is quasicompact and has a closed graph, then G is
u.s.c.

Definition 3.4. A set-valued operator G : J −→ Pcl(X) is said to be a contraction if
there exists 0 ≤ γ < 1 such that

Hd(G(x), G(y)) ≤ γd(x, y), for all x, y ∈ X,

The following two results are easily deduced from the limit properties.

Lemma 3.5. (See e.g. [?], Theorem 1.4.13) If G : X → Pcp(X) is u.s.c., then for any
x0 ∈ X,

lim sup
x→x0

G(x) = G(x0).
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Lemma 3.6. (See e.g. [?], Lemma 1.1.9) If Let (Kn)n∈N ⊂ K ⊂ X be a sequence of
subsets where K is compact in the separable Banach space X. Then

co(lim sup
n→∞

Kn) = ∩N>0co(∪n≥NKn)

where coA refers to the closure of the convex hull of A.

The second one is due to Mazur, 1933:

Lemma 3.7. (Mazur’s Lemma, ([?] [Theorem 21.4])) Let X be a normed space and
{xk}k∈N ⊂ X be a sequence weakly converging to a limit x ∈ X. Then there exists a

sequence of convex combinations ym =

m∑
k=1

αmkxk with αmk > 0 for k = 1, 2, ..,m and

m∑
k=1

αmk = 1, which converges strongly to x.

Lemma 3.8. [?] C : [0, T ]→ Pcl(X) such that

(i). C is Hausdorff lower semicontinuous at t = 0;
(ii). ∂C is Hausdorff upper semicontinuous at t = 0;
(iii). there exist x ∈ X and r0 > 0 such that B(x, r0) ⊆ C(0)

Then for every r ∈ (0, r0) there exists δ > 0 such that B(x, r) ⊂ C(r) for all t ∈ [0, δ].

4. Statement of the main results

Definition 4.1. A function x, y ∈ M2([−r, T ], X), is said to be a solution of (1.3) if
x, y satisfies the equation dx(t) ∈ Np(x(t), C1(t))dt+G1(t, xt, yt)dB

H1 a, e. t ∈ [0, T ]

dy(t) ∈ Np(y(t), C2(t))dt+G2(t, xt, yt)dB
H2 a, e. t ∈ [0, T ]

and the conditions (x(t), y(t)) ∈ (C1(t), C2(t)), for all t ∈ [0, T ].

First, we will list the following hypotheses which will be imposed in our main
theorem. In this section,

(H1) Cj(t) is convex for every t ∈ [0, T ] and there exists λ > 0 such that

Hdj (Cj(t), Cj(s)) ≤ λ|t− s|,

for all t, s ∈ [0, T ],
(H2) there exists a positive constant αj , βj for each j = 1, 2 such that

E|Gj(t, x, y)−Gj(t, x, y)| ≤ αj ||x− x||M2
F0

+ βj ||y − y||M2
F0
,

for all t ∈ [0, T ] and x, y, x, y ∈M2([−r, 0], X)

Theorem 4.2. Assume that (H1) and (H2) hold. Then, problem (1.3) possesses a
unique solution on [0, T ].
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Proof. The existence part. Therefore, we pass immediately to uniqueness. We shall
obtain the solution by a well-establish discretization procedure.
The following discretization scheme lies at the heart of many proofs for sweeping
processes. Consider for every n ∈ N, the following partition of [0, T ],

tn,i :=
iT

2n
, 0 ≤ i ≤ 2n and In,i = (tn,i, tn,i+1], if 0 ≤ i ≤ 2n − 1, n ≥ 0.

xn,0 =

 φ(t), t ∈ [−r, 0],

φ(0), t ∈ [0, tn,0],

for any In,0 = (tn,0, tn,1], we have

xn,1 =


xn,0(t), t ∈ [−r, tn,0],

proj
(
φ(0) +G1(tn,0, x(n,0)tn,0

, y(n,0)tn,0
)(BH1(tn,1)−BH1(tn,0), C1(tn,1)

)
,

t ∈ [tn,0, tn,1]

for any In,1 = (tn,1, tn,2], we have

xn,2 =


xn,1(t), t ∈ [−r, tn,1],

proj
(
xn,1(tn,1) +G1(tn,1, x(n,1)tn,1

, y(n,1)tn,1
)(BH1(tn,2)

−BH1(tn,1), C1(tn,2)
)
,

t ∈ [tn,1, tn,2].

With the same argument we can define recursively

xn,i+1 =


xn,i(t), t ∈ [−r, tn,i],
proj

(
xn,i(tn,i)

+G1(tn,i, x(n,i)tn,1
, y(n,i)tn,1

)(BH1(tn,i+1)

−BH1(tn,i), C1(tn,i+1)
)
, t ∈ [tn,i, tn,i+1].

Estimate (xn, yn) by norm M2([−r, T ], X)×M2([−r, T ], X), since (xn, yn) is piecewise
affine, by direct calculations,

sup{
√
E|xn,i+1(t)− xn,i(t)|2 : t ∈ [−r, T ]} ≤ λ T

2n
. (4.1)

Observe that (xn,i(t), yn,i(t)) ∈ (C1(tn,i), C2(tn,i)),and

E|xn,i+1(t)− xn,i(t)| ≤ EHd1(C1(tn,i), C1(tn,i+1)) ≤ λ T
2n

(4.2)

and

E|yn,i+1(t)− yn,i(t)| ≤ EHd2(C2(tn,i), C2(tn,i+1)) ≤ λ T
2n
, (4.3)

for all t ∈ (tn,i−1, tn,i], for every 0 ≤ i ≤ 2n.
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By affine interpolation we define a corresponding sequence of approximate solutions
xn, yn ∈M2([−r, T ], X); for t ∈ In,i the explicit formula is

xn(t) =


xn,i(t), t ∈ [−r, tn,i]

xn,i(tn,i) +
t−tn,i

εn
(xn,i+1(t)− xn,i(t))

+G1(tn,i, x(n,i)tn,i)(B
H1(t)−BH1(tn,1)), t ∈ [tn,i, tn,i+1]

and

yn(t) =


yn,i(t), t ∈ [−r, tn,i]

yn,i(tn,i) +
t−tn,i

εn
(yn,i+1(t)− yn,i(t))

+G2(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH2(t)−BH2(tn,1)), t ∈ [tn,i, tn,i+1]

where εn = T
2n and for every 0 ≤ i ≤ 2n − 1.

From the definition of normal proximal cone, we have

dxn(t) ∈ −N(xn,i+1, C1(tn,i+1))dt

+G1(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH1(t)−BH1(tn,1)). (4.4)

and

dyn(t) ∈ −N(yn,i+1, C2(tn,i+1))dt

+G2(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH2(t)−BH2(tn,1)). (4.5)

Now we prove that {xn, yn, n ∈ N} is compact in M2([−r, T ], X), for each
zn = (xn, yn) in M2([−r, T ], X)×M2([−r, T ], X).
Step 1. {(xn, yn) n ∈ N} are bounded sets in M2([−r, T ], X)×M2([−r, T ], X).
We obtain

|xn(t)| ≤ |xn,i(t)| + |xn,i+1(t)− xn,i(t)|
+b|G1(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)||(BH1(t)−BH1(tn,1))|

≤ |xn,0(t)|+
i+1∑
k=1

|xn,k−1(t)− xn,k(t)|

+T |G1(tn,i, x(n,i, y(n,i)tn,i
, y(n,i)tn,i

)||(BH1(t)−BH1(tn,1))|

≤ ||φ||+ 2T + T
(
|G1(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)

−G1(tn,i, 0, 0)|+ |G1(tn,i, 0, 0)|
)
|(BH1(t)−BH1(tn,1))|

≤ ||φ||+ 2T + T
(
α1||(xn,i)tn,i

||M2
F0

+β1||(yn,i)tn,i ||M2
F0

+ |G1(tn,i, 0, 0)|
)
|(BH1(t)−BH1(tn,1))|.

By definition (xn,i, yn,i) we can prove that there exist M,M > 0 such that

sup{E|xn,i(t)| : t ∈ [−r, T ]} ≤M
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and
sup{E|yn,i(t)| : t ∈ [−r, T ]} ≤M.

Hence, by using (4.2) and (4.3), we have

E|xn(t)|2 ≤2E||φ||2 + 4T 2 + 2T 2
(
α1E||(xn,i)tn,i ||2 + β1E||(yn,i)tn,i ||2

+ sup
t∈[0,b]

|G1(t, 0, 0)|2
)
E|(BH1(t)−BH1(tn,1))|2

≤2E||φ||2 + 4T 2 + 2T 2
(
α1E||(xn,i)tn,i ||2 + β1E||(yn,i)tn,i ||2

+ sup
t∈[0,T ]

|G1(t, 0, 0)|2
)
|t− tn,1|2H1

≤2E||φ||2 + 4T 2 + 2T 2
(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
|t− tn,1|2H1

≤2E||φ||2 + 4T 2 + 2T 2
(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
T 2H1 = l1.

Similarly, we have

E|yn(t)|2 ≤2E||φ||2 + 4T 2 + 2T 2
(
α2M + β2M + sup

t∈[0,T ]

|G2(t, 0, 0)|2
)
T 2H2 = l2.

which implies that (
E|xn(t)|2
E|yn(t)|2

)
≤
(
l1
l2

)
Step 2. {(xn, yn) n ∈ N} are equicontinuous sets in M2([−r, T ], X)×M2([−r, T ], X).
Let τ1, τ2 ∈ [tn,i, tn,i+1], τ1 < τ2. Thus

E|xn(τ2)− xn(τ1)|2

= E
∣∣∣τ2 − τ1

εn
(xn,i+1 − xn,i) +G1(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)(BH1(τ2)−BH1(τ1))

∣∣∣2
≤ 2|τ2 − τ1|2 + 2

(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
|τ2 − τ1|2H1 .

Similarly

E|yn(τ2)− yn(τ1)|2 ≤ 2|τ2 − τ1|2

+ 2
(
α2M + β2M + sup

t∈[0,T ]

|G2(t, 0, 0)|2
)
|τ2 − τ1|2H2 .

The right-hand side tends to zero as τ2 − τ1 → 0, and ε sufficiently small. From
Steps 1, 2. By the Arzela-Ascoli theorem, we conclude that there is a subsequence of
(xn, yn), again denoted (xn, yn) which converges to (x, y) ∈M2([−r, T ], X).
Now, we prove that (x(t), y(t)) ∈ (C1(t), C2(t)). Let ρn(t) ,µn(t) be two functions
from [0, T ] into [0, T ] defined by

ρn(t) = tn,i, if t ∈ [tn,i, tn,i+1), ρn(0) = 0

µn(t) = tn,i+1 if t ∈ [tn,i, tn,i+1), µn(0) = 0,
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for all t ∈ [0, T ]. From (4.4) and (4.5) we have

dxn(t) ∈ −N(xn(µn(t)), C1(µn(t)))dt

+G1(tρn(t), xρn(t), yρn(t))dB
H1(ρn(t)), a.e. t ∈ [0, T ] (4.6)

and

dyn(t) ∈ −N(xn(µn(t)), C2(µn(t)))dt

+G2(tρn(t), xρn(t), yρn(t))dB
H2(ρn(t)), a.e. t ∈ [0, T ]. (4.7)

Moreover, for all n large enough,we have

ρn(t)→ t, µn(t)→ t uniformly on [0, b]

Since |ρn(t)− t| ≤ T
2n and |µn(t)− t| ≤ T

2n . Thus

|yn(ρn(t))− yn(t)| ≤ Hd1(C1(ρn(t)), C1(t)) ≤ λ|ρn(t)− t|,

which immediately yields

sup{
√
E|yn(ρn(t))− yn(t)|2 : t ∈ [0, T ]} ≤ λ

√
E|ρn(t)− t|2 → 0 as n→∞.

Let t ∈ [0, T ].From (4.1) for each n ∈ N,tn,i ∈ In,i for some i,

|xn(t)− C1(t)| ≤ |xn(t)− xn(tn,i)|+ d(xn(tn,i), C1(t))

≤ λ
T

2n
+Hd1(C1(tn,i), C1(t)).

Thus

|xn(t)− C1(t)| ≤ λ T

2n−1
. (4.8)

Since (xn, yn) is defined by linear interpolation, we obtain

|x′n(t)| ≤ 1

εn
sup
i
|xn,i+1(t)− xn,i(t)|,

and

|y′n(t)| ≤ 1

εn
sup
i
|yn,i+1(t)− yn,i(t)|.

By letting n→∞ in(4.8) for all t ∈ [0, T ],we obtain that

(x(t), y(t)) ∈ (C1, C2).

Now, we prove that the sequences of composition mappings (xn ◦ µn, y ◦ µn) and
(xn ◦ ρn, y ◦ ρn) converge uniforms to (xt, yt) in M2([−r, 0], X)

E|xn(ρn(t) + τ)− x(t+ τ)|2 ≤ 3E|xn(ρn(t) + τ)− xn(t+ τ)|2

+ 3E|xn(ρn(t) + τ)− xn(µn(t) + τ)|2

+ 3E|xn(µn(t) + τ)− xn(t+ τ)|2.

Thus

sup
τ∈[−r,0]

E|(xn)ρn(t) − xt|2 ≤ 3λ2E|ρn(t)− t|2 + 3E|ρn(t)− µn(t)|2

+ 3 sup
τ∈[−r,T ]

E|xn(µn(t))− x(t)|2 → 0 as n→∞.
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Since |(ρn(t)− τ)− (t− τ)| ≤ T
2n and |µn(t)− ρn(t)| ≤ T

2n−1 . We can pass to the limit
when n→∞, we deduce from

(xρn(t), yρn(t))→ (xt, yt) ∈M2([−r, 0], X)

and,the fact that Gi(., ., .) is a continuous function then we have

Gi(ρn(t), xρn(t), yρn(t))→ Gi(t, xt, yt).

Now, we show that

dx(t) ∈ −N(x(t), C1(t))dt+G1(t, xt, yt)dB
H1(t), a.e. t ∈ [0, T ]. (4.9)

and

dy(t) ∈ −N(y(t), C2(t))dt+G2(t, xt, yt)dB
H2(t), a.e. t ∈ [0, T ]. (4.10)

Since (xn, yn) is bounded in X ×X,there exists a subsequence of (xn, yn)converge to
(x, y). Then∫ T

0

σ
(
− x′n(t) +G1(t, (xn)t, (yn)t)dB

H1(t), C1(µn(t))
)
dt

≤
∫ T

0

(
− x′n(t) +G1(t, (xn)t, (yn)t)dB

H1(t), x(µn(t))
)
dt. (4.11)

Using the fact that σ(., Cj(t)) is lower semicontinuous [?],then

lim inf
n→∞

∫ T

0

σ
(
− x′n(t) +G1(t, (xn)t, (yn)t)dB

H1(t), C1(µn(t))
)
dt

≥
∫ T

0

(
− x′(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt. (4.12)

By (5.16) and (5.18),we obtain∫ T

0

(
− x′(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt

≥
∫ T

0

σ
(
− x′(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt. (4.13)

Thus,
dx(t) ∈ −N(x(t), C1(t))dt+G1(t, xt, yt)dB

H1(t), a.e. t ∈ [0, T ].

and
dy(t) ∈ −N(y(t), C2(t))dt+G2(t, xt, yt)dB

H2(t), a.e. t ∈ [0, T ].

Finally, we prove the uniqueness of solutions of the problem (1.3).Let us assume that
(x, y) and (x, y) are two solutions of (1.3).

dx(t) ∈ −N(x(t), C1(t))dt+G1(t, xt, yt)dB
H1(t), a.e. t ∈ [0, T ],

and
dy(t) ∈ −N(y(t), C2(t))dt+G2(t, xt, yt)dB

H2(t), a.e. t ∈ [0, T ].

Since C(t) = (C1(t), C2(t)) is a convex set, then

TCj
(z) = ∪h>0

Cj(t)− z
h

,
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for all t ∈ [0, T ],

TCj (z) ⊂ {v ∈ X : 〈v, ξ〉 ≤ 0 for all ξ ∈ Np(z, ξ)},

which immediately yields〈
x′(t)− x′(t) +

(
G1(t, xt, yt)−G1(t, xt, yt)

)
dBH1(t), x(t)− x(t)

〉
≤ 0.

Thus, we deduce〈
x′(t)− x′(t), x(t)− x(t)

〉
+
〈(
G1(t, xt, yt)−G1(t, xt, yt)

)
dBH1(t), x(t)− x(t)

〉
≤ 0.

By assumptions (H1), (H2) imply

1

2
.
d

dt

∣∣∣x(t)− x(t)
∣∣∣2 ≤ α1||xt − xt||M2

F0

∣∣∣x(t)− x(t)
∣∣∣dBH1(t)

+β1||yt − yt||M2
F0

∣∣∣x(t)− x(t)
∣∣∣dBH1(t) (4.14)

and
1

2
.
d

dt

∣∣∣y(t)− y(t)
∣∣∣2 ≤ α2||xt − xt||M2

F0

∣∣∣y(t)− y(t)
∣∣∣dBH1(t)

+β2||yt − yt||M2
F0

∣∣∣y(t)− y(t)
∣∣∣dBH1(t). (4.15)

Integrating (4.14)and (4.15) over (0, t) we arrive at∣∣∣x(t)− x(t)
∣∣∣2 ≤ α1

∫ t

0

||xs − xs||M2
F0

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

+ β1

∫ t

0

||ys − ys||M2
F0

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

≤ α1

∫ t

0

sup
s∈[0,t]

√
E|x(s)− x(s)|2

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

+ β1

∫ t

0

sup
s∈[0,t]

√
E|y(s)− y(s)|2

∣∣∣x(s)− x(s)
∣∣∣dBH1(s).

Then, for each t ∈ [0, T ] and thanks to Lemma 2.4,

E
∣∣∣x(t)− x(t)

∣∣∣4 ≤ 2α1E
∣∣∣ ∫ t

0

sup
s∈[0,t]

√
E|x(s)− x(s)|2

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

∣∣∣2
+ 2β1E

∣∣∣ ∫ t

0

sup
s∈[0,t]

√
E|y(s)− y(s)|2

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

∣∣∣2
≤ 2c2(H1)H1(2H1 − 1)T 2H1−1α1

∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|4ds

+ 2c2(H1)H1(2H1 − 1)T 2H1−1β1∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|2E|y(s)− y(s)|2ds.
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Thus

E
∣∣∣x(t)− x(t)

∣∣∣4 ≤ A1

∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|4ds+B1

∫ t

0

sup
s∈[0,t]

E|y(s)− y(s)|4ds,

where
A1 = 2c2(H1)H1(2H1 − 1)T 2H1−1(2α1 + β1)

and
B1 = c2(H1)H1(2H1 − 1)T 2H1−1β1.

In the same way, we also have

E
∣∣∣y(t)− y(t)

∣∣∣4 ≤ 2c2(H2)H2(2H2 − 1)T 2H2−1α2

∫ t

0

sup
s∈[0,t]

E|y(s)− y(s)|4ds

+ 2c2(H2)H2(2H2 − 1)T 2H2−1β2∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|2E|y(s)− y(s)|2ds,

and, consequently,

E
∣∣∣y(t)− y(t)

∣∣∣4 ≤ A2

∫ t

0

sup
s∈[0,t]

E|y(s)− y(s)|4ds+B2

∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|4ds,

where
A3 = c2(H2)H2(2H2 − 1)T 2H2−1(2α2 + β2),

and
A4 = c2(H2)H2(2H2 − 1)T 2H2−1β2.

Adding these we obtain

E
∣∣∣x(t)− x(t)

∣∣∣4 + E
∣∣∣y(t)− y(t)

∣∣∣4 ≤ A∗ ∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|4ds

+B∗

∫ t

0

sup
s∈[0,t]

E|y(s)− y(s)|4ds,

where A∗ = A1 +B2, B∗ = A2 +B1. Then

sup
s∈[0,t]

E
∣∣∣x(t)− x(t)

∣∣∣4 + E|y(t)− y(t)
∣∣∣4 ≤ A∗∗ ∫ t

0

sup
s∈[0,t]

(
E|x(s)− x(s)|4

+ E|y(s)− y(s)|4
)
ds,

where A∗∗ = max{A∗, B∗}.
By a generalization of Gronwall inequality, we have

sup
s∈[0,t]

E
∣∣∣x(t)−x(t)

∣∣∣4 +E
∣∣∣y(t)−y(t)

∣∣∣4 = 0 =⇒ (x(t), y(t)) = (x(t), y(t)), a.e. t ∈ [0, T ].

The proof is therefore complete. �
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5. Perturbation Problem (1.3)

To prove the main result we will need the following auxiliary inclusion:

−dx(t) ∈ NC1(t)(x(t))dt+ F 1(t, xt, yt)dt

+G1(t, xt, yt)dB
H1 , a.e. t ∈ [0, T ]

−dy(t) ∈ NC2(t)(y(t))dt+ F 2(t, xt, yt)dt

+G2(t, xt, yt)dB
H2 , a.e. t ∈ [0, T ]

x(t) = φ(t), t ∈ [−r, 0], x(0) ∈ C1(0)

y(t) = φ(t), t ∈ [−r, 0], y(0) ∈ C2(0)

(5.1)

Very recently in the case where Gi = 0 the perturbation problem was studied by
Castaing et al . [?]. The aim in those works, is to study the existence of a solution of
the problem (5.1) and investigated the topological structure of the solution set. The
goal of this section is to study the existence result of the problem (5.1).

Theorem 5.1. Assume that (H1) and (H2) and the conditions .

(H3) F j : [0, T ] ×M2([−r, 0], X) ×M2([−r, 0], X) → Pcp,cv(X) be a u.s.c. Carathe-
dory multimap, and for each t ∈ [0, T ], scalarly L([0, T ])⊗B(M2([−r, 0], X), X)
measurable, where L([0, T ]) is the σ− algebra of Lebesgue measurable sets of
[0, T ] and B(M2) is the Borel tribe of M2 and |F j(t, x, y)| ≤ kj for all
(t, x, y) ∈ [0, T ]×M2([−r, 0], X)×M2([−r, 0], X) or some constant kj > 0.

Then, problem (5.1) has at least one solution on [0, T ].

Proof. Consider for every n ∈ N, the following partition of [0, T ],

tn,i :=
iT

2n
, 0 ≤ i ≤ 2n and In,i = (tn,i, tn,i+1], if 0 ≤ i ≤ 2n − 1, n ≥ 0.

xn,0 =

 φ(t), t ∈ [−r, 0],

φ(0), t ∈ [0, tn,0],

for any In,0 = (tn,0, tn,1], we have

xn,1 =



xn,0(t), t ∈ [−r, tn,0],

proj
(
φ(0) + g1

0(tn,0)

+G1(tn,0, x(n,0)tn,0 , y(n,0)tn,0)(BH1(tn,1)

−BH1(tn,0), C(tn,1)
)
, t ∈ [tn,0, tn,1].
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Similarly,for any In,1 = (tn,1, tn,2], we have

xn,2 =


xn,1(t), t ∈ [−r, tn,1],

proj
(
xn,1(tn,1) + g1

0(tn,1)

+G1(tn,1, x(n,1)tn,1
, y(n,1)tn,1

)(BH1(tn,2)

−BH1(tn,1), C(tn,2)
)
, t ∈ [tn,1, tn,2].

With the same argument we can define recursively, for any In,i = (tn,i, tn,i+1],

xn,i+1 =


xn,i(t), t ∈ [−r, tn,i],

proj
(
xn,i(tn,i) + g1

0(tn,i)

+G1(tn,i, x(n,i)tn,1
, y(n,i)tn,1

)(BH1(tn,i+1)

−BH1(tn,i), C(tn,i+1)
)
, t ∈ [tn,i, tn,i+1]

where
gj0(t, u) = min{|x| : x ∈ F j(t, u)}.

By construction, we have (xn,i, yn,i) ∈ (C1, C2), for all t ∈ [tn,i−1, tn,i].
Then for every 0 ≤ i ≤ 2n,

|xn,i+1(t)− xn,i(t)| ≤ Hd1(C1(tn,i), C1(tn,i+1)) ≤ λ T
2n

and

|yn,i+1(t)− yn,i(t)| ≤ Hd2(C1(tn,i), C1(tn,i+1)) ≤ λ T
2n

and, consequently,

sup
{√

E|xn,i+1(t)− xn,i(t)|2 : t ∈ [−r, T ]
}
≤ λ T

2n
(5.2)

and

sup
{√

E|yn,i+1(t)− yn,i(t)|2 : t ∈ [−r, T ]
}
≤ λ T

2n
(5.3)

Put

xn(t) =


xn,i(t), t ∈ [−r, tn,i]

xn,i(tn,i) +
t−tn,i

εn
(xn,i+1(t)− xn,i(t)) + (t− tn,i)g1

0(tn,i)

+G1(tn,i, xtn,i , ytn,i)(B
H1(t)−BH1(tn,1)), t ∈ [tn,i, tn,i+1].

and

yn(t) =


yn,i(t), t ∈ [−r, tn,i]

yn,i(tn,i) +
t−tn,i

εn
(yn,i+1(t)− yn,i(t)) + (t− tn,i)g2

0(tn,i)

+G2(tn,i, xtn,i
, ytn,i

)(BH2(t)−BH2(tn,1)), t ∈ [tn,i, tn,i+1].

Since (xn, yn) is defined by linear interpolation, we have

|x′n(t)| ≤ 1

εn
sup
i
|xn,i+1(t)− xn,i(t)|
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and

|y′n(t)| ≤ 1

εn
sup
i
|y

n,i+1
(t)− y

n,i
(t)|.

Using the fast that the projections are non-expansive, thus

|xn,i+1(t)− proj(xn,i(t), C1(tn,i+1))| ≤ εn|g1
0(tn,i)| ≤ εnk1.

and

|yn,i+1(t)− proj(yn,i(t), C2(tn,i+1))| ≤ εn|g2
0(tn,i)| ≤ εnk2.

Hence

|xn,i+1(t)− xn,i(t)| ≤ εn(k1 + λ). (5.4)

Thus

|x′n(t)| ≤ k1 + λ and sup
t∈J
|x′n(t)|2 ≤ (k1 + λ)2. (5.5)

From the definition of normal proximal cone, we have

dxn(t) ∈ −N(xn,i+1, C1(tn,i+1))dt+ g1
0(tn,i)dt

+G1(tn,i, x(n,i)tn,i , y(n,i)tn,i)(B
H1(t)−BH1(tn,1)), a.e. t ∈ [0, T ] (5.6)

and

dyn(t) ∈ −N(yn,i+1, C2(tn,i+1))dt+ g2
0(tn,i)dt

+G2(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH2(t)−BH2(tn,1)), a.e. t ∈ [0, T ]. (5.7)

Now we prove that {(xn, yn) , n ∈ N} is compact inM2([−r, T ], X)×M2([−r, T ], X).

Step 1. {(xn, yn) n ∈ N} are bounded sets in M2([−r, T ], X)×M2([−r, T ], X).
We have

|xn(t)| ≤|xn,i(t)|+ |xn,i+1(t)− xn,i(t)|+ T |g1
0(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)|

+ |G1(tn,i, x(n,i)tn,i , y(n,i)tn,i)||(BH1(t)−BH1(tn,1))|

≤|xn,0(t)|+ 2

i+1∑
k=1

|xn,k−1(t)− xn,k(t)|+ Tk1

+ |G1(tn,i, x(n,i, y(n,i)tn,i
, y(n,i)tn,i

)||(BH1(t)−BH1(tn,1))|

≤||φ||+ 2T +
(
|G1(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)−G1(tn,i, 0, 0)|

+ |G1(tn,i, 0, 0)|
)
|(BH1(t)−BH1(tn,1))|

≤||φ||+ 2T + Tk1

+ T
(
α1||(xn,i)tn,i ||M2

F0
+ β1||(yn,i)tn,i ||M2

F0

+ |G1(tn,i, 0, 0)|
)
|(BH1(t)−BH1(tn,1))|.
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Then,

E|xn(t)|2 ≤2(||φ||2 + 2T + Tk1)2 + 2T 2
(
α1M + β1M

+ sup
t∈[0,T ]

|G1(t, 0, 0)|2
)
E|(BH1(t)−BH1(tn,1))|2

≤2(||φ||2 + 2T + Tk1)2

+ 2T 2
(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
T 2H1 := l1.

Hence

sup{
√
E|xn(t)|2 : t ∈ [−r, T ]} ≤ l1.

and

sup{
√
E|yn(t)|2 : t ∈ [−r, T ]} ≤ l2.

Which implies that (
E|xn(t)|2
E|yn(t)|2

)
≤
(
l1
l2

)
Step 2. {(xn, yn), n ∈ N} are equicontinuous sets in M2([−r, T ], X).
Let τ1, τ2 ∈ [tn,i, tn,i+1], τ1 < τ2 . Thus

E|xn(τ2)− xn(τ1)|2

= E
∣∣∣τ2 − τ1

εn
(xn,i+1 − xn,i) + (τ2 − τ1)g1

0(tn,i, x(n,i)tn,i , y(n,i)tn,i)

+ G1(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH1(τ2)−BH1(τ1))
∣∣∣2

≤ 3|τ2 − τ1|2 + 3
(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
|τ2 − τ1|2H1

+ 3k2
1|τ2 − τ1|2.

Similarly,

E|yn(τ2)− yn(τ1)|2 ≤ 3|τ2 − τ1|2 + 3
(
α2M + β2M + sup

t∈[0,T ]

|G2(t, 0, 0)|2
)
|τ2 − τ1|2H2

+ 3k2
2|τ2 − τ1|2.

The right-hand side tends to zero as τ2−τ1 → 0, and ε sufficiently small. From Steps 1,
2, by the Arzela-Ascoli theorem, we conclude that there is a subsequence of (xn, yn),
again denoted (xn, yn) which converges to (x, y) in M2([−r, T ], X)×M2([−r, T ], X).
It remains to prove that (x(t), y(t)) ∈ (C1(t), C2(t)). Let t ∈ [0, T ] ,from (5.5) ,we



768 Tayeb Blouhi, Mohamed Ferhat and Safia Benmansour

obtain

0 ≤ |xn(t)− C1(t)| = d(xn(t), C1(t))

≤
∣∣∣xn(t)− xn(tn,i)

∣∣∣+ d(xn(tn,i), C1(t))

≤ (k1 + λ)|t− tn,i|+Hd1(C1(tn,i), C1(t))

≤ (k1 + λ)b

2n−1
.

Then

|xn(t)− C1(t)| ≤ (k1 + λ)T

2n−1
. (5.8)

and

|yn(t)− C2(t)| ≤ (k2 + λ)T

2n−1
. (5.9)

By letting n→∞ in (5.8) and (5.9) ,we obtain that

(x(t), y(t)) ∈ (C1, C2) (5.10)

Now, we define, for t ∈ [0, T ]

ρn(t) = tn,i, µn(t) = tn,i+1 if t ∈ [tn,i, tn,i+1).

Hence, by using (4.4) and (4.5) we have

dxn(t) ∈ −N(xn(µn(t)), C1(µn(t)))dt+ g1
0(tρn(t), xρn(t), yρn(t))

+G1(tρn(t), xρn(t), yρn(t))dB
H1(ρn(t)) a,e. t ∈ [0, T ]. (5.11)

and
dyn(t) ∈ −N(xn(µn(t)), C2(µn(t)))dt+ g2

0(tρn(t), xρn(t), yρn(t))

+G2(tρn(t), xρn(t), yρn(t))dB
H2(ρn(t)) t ∈ a,e. t ∈ [0, T ]. (5.12)

Hence
ρn(t)→ t, µn(t)→ t uniformly on [0, b]

Since |ρn(t)− t| ≤ T
2n and |µn(t)− t| ≤ T

2n . Moreover,

|xn(ρn(t))− xn(t)| ≤ Hd1(C1(ρn(t)), C1(t)) ≤ λ|ρn(t)− t|.
Similarly,

|yn(ρn(t))− yn(t)| ≤ Hd2(C2(ρn(t)), C2(t)) ≤ λ|ρn(t)− t|.
Therefore,

sup{
√
E|xn(ρn(t))− xn(t)|2 : t ∈ [0, T ]} ≤ λ

√
E|ρn(t)− t|2 → 0 as n→∞.

and

sup{
√

E|yn(ρn(t))− yn(t)|2 : t ∈ [0, T ]} ≤ λ
√

E|ρn(t)− t|2 → 0 as n→∞.
In Theorem (4.2) was proved that (xρn(t), yρn(t)) converge to (xt, yt) in

M2([−r, T ], X).

Let vj
n
(t) = gj0(ρn(t), (xn)ρn(t)), (yn)ρn(t))).From H3 we have |vj

n
(t)| ≤ kj for n ∈ N

implies that vj
n
(t) ∈ lB(0, 1), hence (vj

n
)n∈N which converges weakly to some limit

vj ∈ L2(J,X). Since F (., x, y) is u.s.c. with closed and convex values and F j(., ., .)
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is bounded for each j = 1, 2 , then exists a sequence {Fm}m∈N of globally u.s.c. set-
valued mappings on J ×M2([−r, 0], X)×M2([−r, 0], X) with convex compact values
in X ×X satisfying the following conditions:

||F jm(t, x, y)|| ≤ kj ,

for all (t, x, y) ∈ J ×M2([−r, 0], X)×M2([−r, 0], X) and j = 1, 2,

F jm+1(t, x, y) ⊂ F jm(t, x, y), F (t, x, y) = ∩m≥1F
j
m(t, x, y).

Now we need to prove that υj(t) ∈ F j(t, xt, yt), for a.e. t ∈ J. Lemma 3.7 yields the

existence of constants αni ≥ 0, l = 1, 2.., k(n) and j = 1, 2 such that

k(n)∑
l=1

αnl = 1 and

the sequence of convex combinations ψjn(.) =

k(n)∑
l=1

αnl υ
j
l (.) converges strongly to some

limit υj ∈ L2(J,X). Since F j takes convex values, using Lemma 3.6, we obtain that

υj(t) ∈
⋂
n≥1

{ψjn(t)}, a.e t ∈ J

⊂
⋂
n≥1

co{υjk(t), k ≥ n}

⊂
⋂
n≥1

co{
⋃
k≥n

F jm(ρk(t), (xk)ρk(t), (yk)µk(t))}

= co{lim sup
k→∞

F jm(µk(t), (xk)µk(t), (yk)µk(t))}. (5.13)

Since F jm is u.s.c. and has compact values, then by Lemma 3.5, we have

lim sup
n→∞

F jm(ρn(t), (xn)ρn(t), (yn)ρn(t)) = F jm(t, xt, yt) for a.e t ∈ J.

This and (5.13) imply that υj(t) ∈ co(F j(t, xt, yt). Since, for each j = 1, 2 , F jm(., ., .)
has closed, convex values, we deduce that υj(t) ∈ F jm(t, xt, yt) for a.e. t ∈ J ,then
υj(t) ∈ F j(t, xt, yt).
We can pass to the limit when n→∞, we deduce from

(xρn(t), yρn(t))→ (xt, yt) ∈M2([−r, 0], X) as n→ ∞.

Using the fact that Gj(., ., .) is a continuous function then we have

Gj(ρn(t), xρn(t), yρn(t))→ Gj(t, xt, yt) as n→ ∞.

Now, we show that

dx(t) ∈ −N(x(t), C1(t))dt+ v1(t)dt+G1(t, xt, yt)dB
H1(t) a.e. t ∈ [0, T ]. (5.14)

and

dy(t) ∈ −N(y(t), C2(t))dt+ v2(t)dt+G2(t, xt, yt)dB
H2(t) a.e. t ∈ [0, T ]. (5.15)
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Since (xn, yn) is bounded in X ×X,there exists a subsequence of (xn, yn)converge to
(x, y).Then∫ T

0

σ
(
− x′n(t) + v1

n(t) +G1(t, (xn)t, (yn)t)dB
H1(t), C1(µn(t))

)
dt

≤
∫ T

0

(
− x′n(t) + v1

n(t) +G1(t, (xn)t, (yn)t)dB
H1(t), x(µn(t))

)
dt. (5.16)

Using the fact that σ(., C1(t)) is lower semicontinuous ,then

lim inf
n→∞

∫ T

0

σ
(
− x′n(t) + v1

n(t) +G1(t, (xn)t, (yn)t)dB
H1(t), C1(µn(t))

)
dt

≥
∫ T

0

(
− x′(t) + v1(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt. (5.17)

By (5.16) and (5.18),we obtain∫ T

0

(
− x′(t) + v1(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt

≥
∫ T

0

σ
(
− x′(t) + v1(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt. (5.18)

Thus,

dx(t) ∈ −N(x(t), C1(t))dt+ F 1(t, xt, yt)dt+G1(t, xt, yt)dB
H1(t), a.e. t ∈ [0, T ].

and

dy(t) ∈ −N(y(t), C2(t))dt+ F 1(t, xt, yt)dt+G2(t, xt, yt)dB
H2(t), a.e. t ∈ [0, T ].

and the proof is finished. �
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Unsteady flow of Bingham fluid in a thin layer
with mixed boundary conditions

Yassine Letoufa, Hamid Benseridi and Tedjani Hadj Ammar

Abstract. In this paper we consider the dynamic system for Bingham fluid in a
three-dimensional thin domain with Fourier and Tresca boundary condition. We
study the existence and uniqueness results for the weak solution, then we establish
its asymptotic behavior, when the depth of the thin domain tends to zero. This
study yields a mechanical laws that give a new description of the behavior this
system.
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a priori estimates.

1. Introduction

This work gives an extension to describe the flow of fluids in a dynamic system
to some of the results obtained in a series of papers [1, 2, 4, 5, 9], in which the authors
considered a stationary case only of the general equations describing the motion of
some fluid flows in bounded thin domain, with slip and mixed boundary conditions.
The aim of this paper is to study the asymptotic analysis of an incompressible Bing-
ham fluid in a dynamic regime in a three dimensional thin domain mixed boundary
and subject to slip phenomenon on a part of the boundary. We are interested here in
the existence and uniqueness for this problem and also its behavior when the thickness
of the thin domain tends to zero.

This fluid enters the category of non-Newtonian fluids, and there are many mi-
lieus in nature and industry exhibiting the behavior of the Bingham fluid. For exam-
ple, heavy crude oils, colloid solutions...See also historical ref [3]. More specifically, the
model under study is mainly related for lubrication problems in a lot of mechanical
papers [10, 11, 13] when the gap between the solid surfaces is very weak. In this dy-
namic system, the non-slip condition is caused by the chemical structure between the

Received 21 February 2020; Accepted 17 May 2020.
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lubricants and the surrounding surfaces. On the contrary, tangential stresses, when
they reach a certain threshold, destroy the chemical structure and induce a slip phe-
nomena. This phenomenon is implicitly expressed by the Reynolds equation, which
was mathematically posed during 1985 in [12].

Thus, following the same ideas as in [5]. The departure point is the laws of con-
servation, which includes here the effect of the acceleration-dependent inertia forces.
A friction law of Tresca and the Fourier boundary condition are assumed on the
boundary, so fall into the scope of the work of [8]. Then we will compare our results
to stationary problem in [1, 2, 4, 5].

This work is also devoted to prove our results, with suitable conditions on the
initial data, contrary to what was assumed in [7, p. 289-290] where the initial con-
ditions for the data were null. The main difficulty here is to estimate the solutions
of the problem, due to the fractional term for the Bingham constitutive law and the
assumption coming from the initial velocity. The proofs presented in this paper are
based on regularization methods and classical results for elliptic variational derived
from [6, 7]. The plan of this paper is as follow, we present in section 2, some notation
and the weak formulation of problem. In section 3, we give the main results on ex-
istence results by the regularization methods. In section 4, we introduce a scaling as
in [5, 8], we give some needed estimates on the velocity and pressure, also the conver-
gence results. In sections 5 we present the limit problem and we give the mechanical
interpretation of the results.

2. Preliminaries and variational formulation

Let ω be fixed region in the surface x′ = (x1, x2) ∈ R2, and let h ∈ C2 (ω) be a
smooth positive function such that 0 < h ≤ h(x′) ≤ h for all (x′, 0) ∈ ω. Consider an
incompressible Bingham fluid occupying the domain

Ωε =
{
x = (x′, x3) ∈ R3 : (x′, 0) ∈ ω, 0 < x3 < εh(x′)

}
,

Qε = Ωε × ]0, T [ .

where ε ∈ ]0, 1[ and T > 0. Noting Γε the boundary of Ωε, we have Γε = ω̄ ∪ Γ̄ε1 ∪ Γ̄εL,
and Γε1 the upper boundary of equation x3 = εh(x′), ΓεL is the lateral boundary. We
denote by Sn (n = 2, 3) the space of symmetric tensors, while ’.’ and |.| will represent
the inner product and the Euclidean norm on Sn or Rn. We consider the rate of

deformation operator defined for every uε ∈ H1(Ωε)3 by D(uε) =
1

2
(∇uε + (∇uε)T ).

Let ν denote the unit outer normal on Γε, and we write uε for its trace on Γε, also

uεν = uε.ν, uετ = uε − uεν .ν, σεν = (σε.ν) .ν and σετ = σε.ν − (σεν) .ν

be, respectively, the components of the normal, the tangential of uε on Γε, the normal
and the tangential of σε on Γε.

The unstable flow of Bingham fluid that will be studied in this paper is given by the
following mechanical problem.
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Problem P. Find the velocity fields uε = (uε1, u
ε
2, u

ε
3) and the scalar pressure pε such

that

∂uε

∂t
− div (σε) = −∇pε + fε in Ωε × [0, T ] , (2.1)

div(uε) = 0 in Ωε × [0, T ] , (2.2) σεij = ε−1α
Dij(u

ε)

|D(uε)|
+ 2µDij(u

ε) if |D(uε)| 6= 0

|σε| ≤ ε−1α if |D(uε)| = 0
in Ωε × [0, T ] , (2.3)

uε = 0 on ΓεL × ]0, T [ , (2.4)

uε · ν = 0 on (ω ∪ Γε1)× ]0, T [ , (2.5)

στ (uε) = −lεuε on Γε1 × ]0, T [ , (2.6){
|σετ | < ε−1k ⇒ uετ (t) = 0
|σετ | = ε−1k ⇒ ∃λ ≥ 0 uετ (t) = −λσετ

on ω × [0, T ] , (2.7)

uε (x, 0) = uε0 (x) ∀x ∈ Ωε. (2.8)

Here, the flow is given by equation (2.1), where fε = (fε1 , f
ε
2 , f

ε
3 ) denote the volume

force of density. The equation (2.2) represent the incompressibility condition. Relation
(2.3) represents the constitutive law of Bingham fluid of viscosity µ and plasticity
threshold α, where µ, α > 0 are constants independent of ε. The condition (2.4) is
the Dirichlet boundary. (2.5) give the non-slip condition of velocity on Γε1 and ω. (2.4)
represent the Fourier condition on Γε1, where lε > 0 is a given constant. Condition
(2.7) represents a Tresca’s friction law on ω, where k is a coefficient independent of
ε, finally, the initial velocity is a given by (2.8), with uε0 6= 0 is a given function.

Now, we us consider the following function spaces

Kε =
{
φ ∈ H1(Ωε)3 : φ = 0 on ΓεL, φ.ν = 0 on ω ∪ Γε1

}
,

Kε
div = {φ ∈ Kε : div(φ) = 0 in Ωε } ,

L2
0(Ωε) =

{
q ∈ L2(Ωε) :

∫
Ωε

q dx = 0

}
.

Let us introduce the bilinear forms a, ă and functional Jε defined by

a(uε, φ− uε) = 2µ

∫
Ωε

Dij (uε)Dij (φ− uε) dx,

ă(uε, φ− uε) = a(uε, φ− uε) + lε
∫

Γε
1

uε. (φ− uε) dτ,

Jε(φ) = ε−1

∫
ω

k |φτ | dx′ +
√

2αε−1

∫
Ωε

|D (φ)| dx.

Jε is convex and continuous but non differentiable in Kε.

Following [5, 8], the variational inequality of the problem (2.1)-(2.8) is given by
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Problem Pv. Find {uε, pε} where uε(t) ∈ Kε
div,

∂uε

∂t
(t) ∈ Kε and pε(t) ∈ L2

0(Ωε) such

that ∫
Ωε

∂uε

∂t
(t). (φ− uε(t)) dx+ ǎ(uε(t), φ− uε(t))−

∫
Ωε

pε div (φ) dx+

Jε(φ)− Jε(uε(t)) ≥
∫
Ωε

fε. (φ− uε(t)) dx ∀t ∈ ]0, T [ ∀φ ∈ Kε
(2.9)

with
uε(0) = uε0 (6= 0) . (2.10)

Notation. To simplify the writing, we will denote the norm in L2 (Ωε)
3

by‖.‖0,Ωε and

the norm in Hs (Ωε)
3

by ‖.‖s,Ωε , the inner products on the space L2 (Ωε)
3

designed

by (., .) and le 〈., .〉 denote the duality pairing between (Kε
div)
′

and Kε
div.

3. Existence and uniqueness results

We establish here a theorem of existence of weak solutions for Pv .
Theorem 3.1. We make the following assumptions :

fε,
∂fε

∂t
∈ L2

(
0, T ;L2 (Ωε)

3
)

, fε (0) ∈ L2 (Ωε)
3

(3.1)

k ∈ C∞0 (ω), k > 0 does not depend on t, (3.2)

uε0 ∈ H2(Ωε)3 ∩H1
0 (Ωε)3, (D (uε0))τ = 0 on ω ∪ Γε1, (3.3)

∃η > 0 |D (uε0)| ≥ ε−1η a.e. in Ωε. (3.4)

Under these assumptions, there exist a function uε unique solution of (2.9)-(2.10)
with

uε,
∂uε

∂t
∈ L∞

(
0, T ;L2 (Ωε)

3
)
∩ L2

(
0, T ;H1 (Ωε)

3
)

. (3.5)

Remark 3.1. The hypothesis 〈uε0 6= 0〉 leads us to make additional techniques in the
resolution of (2.9)-(2.10). First, we introduce two technical lemmas in the following
paragraph, which will be used to obtain the needed estimates, then we will give the
demonstration of theorem 3.1.

3.1. Regularization

For ζ > 0, we consider the operator ψζ and Ψζ defined by

ψζ : L2 (ω)
2 → L2 (ω)

2
, v → ψζ(v) = |v|ζ−1

v

Ψζ : H1 (Ωε)
3×3 → H1 (Ωε)

3×3
, σ → Ψζ(σ) = |σ|ζ−1

σ

From [7], we approach Jε by differentiable family;

Jεζ (v) = ε−1

∫
ω

k(x′)
|vτ |(1+ζ)

1 + ζ
dx′ +

√
2αε−1

∫
Ωε

|D (v)|(1+ζ)

1 + ζ
dx,

we have〈(
Jεζ
)′

(v) , φ
〉

= ε−1

∫
ω

kψζ(vτ ).φτdx
′ +
√

2αε−1

∫
Ωε

Ψζ(D (v)).D (φ) dx. (3.6)
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Then, we can approach the inequality (2.9) by the following equation, for all φ ∈ Kε
div:(

∂uεζ
∂t

(t) , φ

)
+ ă

(
uεζ (t) , φ

)
+
〈(

Jεζ
)′

(v) , φ
〉

= (fε (t) , φ) (3.7)

with
uεζ(0) = uε0 (3.8)

Lemma 3.1. Let G : S?3 → S3 be defined by G(τ) = |τ |ζ−1
τ such that ζ ∈ ]0, 1[. Let

σ ∈ H1 (Ωε)
3×3

, we suppose that there exist a strictly positive constant β such that

|σ| ≥ β a. e. in Ω
ε
, then

Goσ ∈ H1 (Ωε)
3×3

and
∂

∂xk
(Goσ) =

(
∂G

∂τij
oσ

)
∂σij
∂xk

∀i, j, k ∈ {1, 2, 3} .

Proof. We have |G(τ)| = |τ |ζ ∀τ ∈ S?3. Since |σ| ≥ β, and therefore

|Goσ| = |σ|ζ = |σ| |σ|ζ−1 ≤ βζ−1 |σ| ,

as a consequence Goσ ∈ L2 (Ωε)
3×3

.
Similarly,by a standard calculation of differentiation of a composition, we have∣∣∣∣( ∂G

∂τij
oσ

)
∂σij
∂xk

∣∣∣∣ =

∣∣∣∣|σ|ζ−1
(

(ζ − 1)σ2
ij |σ|

−2
+ 1
) ∂σij
∂xk

∣∣∣∣
≤ |σ|ζ−1

∣∣∣∣∂σij∂xk

∣∣∣∣ ≤ βζ−1

∣∣∣∣∂σij∂xk

∣∣∣∣ (3.9)

and thus

(
∂G

∂τij
oσ

)
∂σij
∂xk

∈ L2 (Ωε)
3×3

. It remains to verify that∫
Ωε

(Goσ) .
∂Φ

∂xk
dx =

∫
Ωε

(
∂G

∂τij
oσ

)
∂σij
∂xk

.Φdx ∀Φ ∈ C1
0 (Ωε)

3×3
.

By Friedrich Theorem (see [6, p. 265]), there exists a sequence σn in C∞0
(
R3
)3×3

such

that σn → σ in L2 (Ωε)
3×3

and ∇σn → ∇σ in L2 (W ε)
3×3×3

for all open W ε with
W ε ⊂ Ωε. Then, we can follow the proof with an argument similar to that used in
proof of [6, Proposition 9.5]. �

Lemma 3.2. Let ε, ζ ∈ ]0, 1[. If uε0 verifies the assumptions (3.3), (3.4). Then
(
Jεζ

)′
(uε0)

belong to L2 (Ωε)
3
, moreover, there exist a constant γ > 0 does not depend on Ωε,

such that ∥∥∥(Jεζ )′ (uε0)
∥∥∥

0,Ωε
≤ ε−1γ ‖uε0‖2,Ωε . (3.11)

Proof. Using Green’s formula in (3.6) and using the assumption (3.3), we get〈(
Jεζ
)′

(uε0) , φ
〉

= −
√

2αε−1

∫
Ωε

{Div (Ψζ(D (uε0))}φdx (3.12)

Applying lemma 3.1 for σ = D (uε0) and β = ε−1η, clearly Ψζ(D (uε0)) ∈ H1(Ωε)3×3.
By [7] we can write the Gelfand triple

Kε
div ⊂ L2(Ωε)3 ⊂ (Kε

div)
′
,
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and it follows the following relation :((
Jεζ
)′

(uε0) , φ
)

=
〈(
Jεζ
)′

(uε0) , φ
〉
∀φ ∈ L2(Ωε)3.

By comparison with (3.12), we find(
Jεζ
)′

(uε0) = −
√

2αε−1Div (Ψζ(D (uε0)) .

But, due to fact that (3.9) we have‖Ψζ(D (uε0))‖1,Ωε ≤ ηζ−1 ‖D (uε0)‖1,Ωε . Then, using

Sobolev injection related to Div and D, the relation (3.11) can be easily deduced with

γ =
√

6αηζ−1. �

3.2. Demonstration of Theorem 3.1

First, we seek to estimate the solution independently of ζ. Let t ∈ [0, T ]. As〈(
Jεζ
)′ (

uεζ
)
, uεζ

〉
≥ 0,

the equation (3.7) for φ = uεζ(t) becomes

1

2

d

dt

∥∥uεζ(t)∥∥2

0,Ωε + a
(
uεζ(t), u

ε
ζ(t)

)
+ lε

∥∥uεζ(t)∥∥2

0,Γε
1

≤ (fε(t), uεζ(t)). (3.13)

By [5] there exist a constant Ck > 0 such that

a
(
uεζ(t), u

ε
ζ(t)

)
+ lε ‖v (t)‖20,Γε

1
≥ 2µCK ‖v (t)‖21,Ωε ∀v (t) ∈ Kε

div.

Then, by the integral of (3.13) relative to t, and using a Gronwall-type argument we
obtain

∥∥uεζ(t)∥∥2

0,Ωε +

t∫
0

∥∥uεζ(σ)
∥∥2

1,Ωε dσ ≤ c (3.14)

Now, we derive (3.7) in t and taking φ =
∂uεζ
∂t

(t),(
∂2uεζ
∂t2

(t),
∂uεζ
∂t

(t)

)
+ a

(
∂uεζ
∂t

(t),
∂uεζ
∂t

(t)

)
+ lε

∥∥∥∥∂uεζ∂t (t)

∥∥∥∥2

0,Γε
1

+

〈
d

dt

(
Jεζ

)′ (
uεζ(t)

)
,
∂uεζ
∂t

(t)

〉
=

(
∂fε

∂t
(t),

∂uεζ
∂t

(t)

)
.

(3.15)

Taking into account Kε
div ⊂ L2(Ωε)3 ⊂ (Kε

div)
′
and by [12], the following inequality

holds: there exists a positives constants ρ and λ, such that

a(v, v) + ρ ‖v‖20,Ωε ≥ λ ‖v‖21,Ωε ∀v ∈ Kε.
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We know that the operator
(
Jεζ

)′
is monotonous, we have〈

d

dt

(
Jεζ
)′

(φ(t)) , φ′(t)

〉
=

∫
ω

kε lim
s→0

ψζ(φτ (t+ s))− ψζ(φτ (t))

s
.
φτ (t+ s)− φτ (t)

s
dx′

+
√

2αε−1

∫
Ωε

lim
s→0

Ψζ(φ(t+ s))−Ψζ(φ(t))

s
.
φ(t+ s)− φ(t)

s
dx′

≥ 0.

So, the formula (3.15) becomes∥∥∥∥∂uεζ∂t (t)

∥∥∥∥2

0,Ωε

+ λ

t∫
0

∥∥∥∥∂uεζ∂t (s)

∥∥∥∥2

1,Ωε

ds+ 2lε
t∫
0

∥∥∥∥∂uεζ∂t (s)

∥∥∥∥2

0,Γε
1

ds

≤
∥∥∥∥∂uεζ∂t (0)

∥∥∥∥2

0,Ωε

+ (ρ+ 1)

t∫
0

∥∥∥∥∂uεζ∂t (s)

∥∥∥∥2

0,Ωε

ds+

t∫
0

∥∥∥∥∂fε∂t (s)

∥∥∥∥2

0,Ωε

ds

(3.16)

But,
∂uεζ
∂t

(0) is defined by, for all φ ∈ Kε
div,(

∂uεζ
∂t

(0), φ

)
= (fε(0), φ)− a(uε0, φ)−

〈(
Jεζ
)′

(uε0) , φ
〉

Consequently, we deduce that

∂uεζ
∂t

(0) = fε(0)−A(uε0)−
(
Jεζ
)′

(uε0) in L2 (Ωε)
3

(3.17)

where A(uε0) ∈ L
(
Kε

div;Kε′

div

)
is given by Riesz’s representation theorem,

〈A(uε0), φ〉 = a(uε0, φ).

According to lemma 3.2 and the assumptions (3.1) , we have∥∥∥∥∂uεζ∂t (0)

∥∥∥∥
0,Ωε

≤ cte (independent of ζ).

This, joined to (3.16) and using a Gronwall lemma, shows that∥∥∥∥∂uεζ∂t (t)

∥∥∥∥2

0,Ωε

+

t∫
0

∥∥∥∥∂uεζ∂t (s)

∥∥∥∥2

1,Ωε

ds+ lε
t∫
0

∥∥∥∥∂uεζ∂t (s)

∥∥∥∥2

0,Γε
1

ds ≤ c. (3.18)

By (3.14) and (3.18), we can extract from uεζ a sequence denoted uεδ such that the

following convergences in L∞
(

0, T ;L2 (Ωε)
3
)
∩ L2

(
0, T ;H1 (Ωε)

3
)

:

uεδ −→ uε,
∂uεδ
∂t
−→ ∂uε

∂t
.
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We deduce from equation (3.7) that(
∂uεδ
∂t

, φ− uεδ
)

+ a (uεδ, φ− uεδ) + lε
∫

Γε
1

uεδ (φ− uεδ) dτ + Jεδ (φ)

+Jεδ (uεδ)− (fε, φ− uεδ) = Jεδ (φ)− Jεδ (uεδ)−
〈
(Jεδ )

′
(uεδ) , φ− uεδ

〉
≥ 0

Finally, passing to the limit in δ as in [12], and using the semi-continuous inferior

of the function u →
T∫
0

ǎ(u, u)dt and v →
T∫
0

Jε (v) dt for L2 (0, T ;Kε
div) with the weak

topology, to obtain (2.9)-(2.10).
The proof of uniqueness is analogous to [8], and this concludes the proof of theorem
3.1. �

4. Some estimates and convergence

4.1. The rescaled problem

To estimate the solutions {uε, pε} we use the scaling z = x3/ε and the following
fixed domains

Ω =
{

(x′, z) ∈ R3 : (x′, 0) ∈ ω, 0 < z < h(x′)
}
,

Q = Ω× ]0, T [ .

We denote by Γ1 is the upper boundary of the equation z = h (x) and ΓL is the lateral
boundary. This rescaling maps the spaces Kε, Kε

div and L2
0(Ωε) onto the spaces K,

Kdiv and L2
0(Ω) respectively, are defined by:

K =
{
φ ∈ H1(Ω)3 : φ = 0 on ΓL, φ.ν = 0 on ω ∪ Γ1

}
,

Kdiv = {φ ∈ K : div(φ) = 0 in Ω } ,

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
.

We denote by ûε = (ûε1, û
ε
2, û

ε
3) and p̂ε the rescaling of the solution by {uε, pε} of

problem (2.9)-(2.10). For any (x′, z, t) ∈ Q, we set

ûεi (x′, z, t) = uεi (x′, x3, t) i = 1, 2, ûε3 (x′, z, t) = ε−1uε3 (x′, x3, t) ,

(ûε0)i (x′, z) = (uε0)i (x′, x3) i = 1, 2, (ûε0)3 (x′, z) = ε−1 (uε0)3 (x′, x3) ,

p̂ε (x′, z, t) = ε2pε (x′, x3, t) ,

and defining the rescaled force by

fε (x′, x3, t) = ε−2f̂ (x′, z, t) .

To meet our needs in paragraph 4.2, according to [5] we must assume
µC(Γε1) ≤ lε

where C(Γε1) = 2|| ∂∂x2
hε||C(ω̄)(1 + || ∂∂x1

hε||2C(ω̄)

lε = ε−1 l and l be not dependent on ε

(4.1)
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One can check that {ûε, p̂ε} solves the rescaled problem∑
i=1,2

ε2

(
∂ûεi
∂t

, φ̂i − ûεi
)

+ ε4

(
∂ûε3
∂t

, φ̂3 − ûε3
)

+ â
(
ûε, φ̂− ûε

)
−
∑
i=1,2

∫
Ω

p̂ε
∂(φ̂i − ûεi )

∂xi
dx′dz −

∫
Ω

1

ε
p̂ε
∂(φ̂3 − ûε3)

∂z
dx′dz

+
∑
i=1,2

l

∫
Γ1

ûεi

(
φ̂i − ûεi

)
dτ + l

∫
Γ1

ε2ûε3

(
φ̂3 − ûε3

)
dτ

+
√

2αε−1

∫
Ω

(∣∣∣D̃ (φ̂)∣∣∣− ∣∣∣D̃ (ûετ )
∣∣∣) dx+

∫
ω

k
(∣∣∣φ̂τ ∣∣∣− |(ûε)τ |) dx′

≥
∑
i=1,2

∫
Ω

f̂i

(
φ̂i − ûεi

)
dx′dz + ε

∫
Ω

f̂3

(
φ̂3 − ûε3

)
dx′dz

∀φ̂ ∈ K, ∀t ∈ ]0, T [ ,

ûε(0) = ûε0,



(4.2)

where

â
(
ûε (t) , φ̂− ûε (t)

)
=

∑
i,j=1,2

∫
Ω

ε2µ

(
∂ûεi
∂xj

+
∂ûεj
∂xi

)
∂

∂xj
(φ̂i − ûεi )dx′dz

+
∑
i=1,2

∫
Ω

µ

(
∂ûεi
∂z

+ ε2 ∂û
ε
3

∂xi

)
∂

∂z
(φ̂i − ûεi )dx′dz

+

∫
Ω

2µε2 ∂û
ε
3

∂z

∂(φ̂3 − ûε3)

∂z
dx′dz

+
∑
j=1,2

∫
Ω

µε2

(
ε2 ∂û

ε
3

∂xj
+
∂ûεj
∂z

)
∂

∂xj
(φ̂3 − ûε3)dx′dz,

and∣∣∣D̃ (v)
∣∣∣ =

1

4

2∑
i,j=1

ε2

(
∂vi
∂xj

+
∂vj
∂xi

)2

+
1

2

2∑
i=1

(
∂vi
∂z

+ ε2 ∂v3

∂xi

)2

+ ε2

(
∂v3

∂z

)2
 1

2

.

4.2. Estimates of solutions

We have the following estimate theorem
Theorem 4.1. Assume that (4.1) hold, and let {uε, pε} be a solution of problem (2.9)-

(2.10). Then, there exist three constants C, C̃ and C̃ ′ independents of ε such that

2∑
i=1

‖εûεi (t)‖20,Ω +

t∫
0

∥∥∥∥∂ûεi∂z (s)

∥∥∥∥2

0,Ω

ds+

t∫
0

∥∥∥∥ε2 ∂û
ε
3

∂xi
(s)

∥∥∥∥2

0,Ω

ds

+

∥∥ε2ûε3 (t)
∥∥2

0,Ω
+

t∫
0

∥∥∥∥ε∂ûε3∂z
(s)

∥∥∥∥2

0,Ω

ds+

2∑
i,j=1

t∫
0

∥∥∥∥ε∂ûεi∂xj
(s)

∥∥∥∥2

0,Ω

ds ≤ C,

(4.3)

∑
i=1,2

‖ûεi‖2L2(Q) + ‖εûε3‖2L2(Q) ≤ C̃, (4.4)
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∑
i=1,2

‖ε∂û
ε
i

∂t
‖2L2(Q) + ‖ε2 ∂û

ε
3

∂t
‖2L2(Q) ≤ C̃

′. (4.5)

Proof. From [8], we recall the following inequalities (Poincaré, Korn and Young res-
pectively)

‖uε(t)‖20,Ωε ≤ 2h
2
ε2 ‖∇uε(t)‖20,Ωε + 2hε

∫
Γε
1

‖uε(t)‖20,Γε
1
dτ , (4.6)

µ ‖∇uε(t)‖20,Ωε ≤ a(uε(t), uε(t)) + µC(Γε1)

∫
Γε
1

‖uε(t)‖20,Γε
1
dτ, (4.7)

ab ≤ θ2 a
2

2
+ θ−2 b

2

2
, ∀ (a, b) ∈ R2, ∀θ ∈ R∗.

Integrating (2.9) over [0, t] and choosing φ = 0, we have

1

2
‖uε (t)‖20,Ωε +

t∫
0

a(uε(s), uε(s))ds+ lε
t∫

0

‖uε(s)‖20,Γε
1
ds

≤ 1

2
‖uε0‖

2
0,Ω +

t∫
0

(fε(s), uε(s)) ds.

(4.8)

Hence, by using Hölder, Poincaré and Young inequalities for θ =
√
µ/2,

a = ‖∇uε (s)‖0,Ωε and b = εh ‖fε (s)‖0,Ωε ,

then θ =
√
lε/2, a = ‖uε(s)‖20,Γε

1
and b =

√
hε ‖fε(s)‖20,Ωε , respectively, we get∣∣∣∣ t∫

0

(fε(s), uε(s))ds

∣∣∣∣ ≤ µ

4

t∫
0

‖∇uε(s)‖20,Ωε ds+
2ε2h

2

µ

t∫
0

‖fε(s)‖20,Ωε ds

+
lε

4

t∫
0

‖uε(s)‖20,Γε
1
ds+

2hε

lε

t∫
0

‖fε(s)‖20,Ωε ds.

(4.9)

Ignoring the first term of (4.8) and combining (4.1), (4.7) and (4.9) we infer

µ

4

t∫
0

‖∇uε(s)‖20,Ωε ds+
lε

4

t∫
0

‖uε(s)‖20,Γε
1
ds

≤ 1

2
‖uε0‖

2
0,Ω +

(
2ε2h

2

µ
+

2hε

lε

)
t∫

0

‖fε(s)‖20,Ωε ds,

multiplying the last inequality by 4ε2 and passing to the fixed domain in the right
hand, we get

ε2

t∫
0

‖∇uε(s)‖20,Ωε ds+ ε

t∫
0

‖uε(s)‖20,Γε
1
ds ≤ C (4.10)

where C does not depend on ε.
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We change again to the fixed domain in the first term of inequality (4.10), we find

(4.3). From (4.6) and (4.10), it is easy to obtain a constant C̃ = max(2h
2
, 2h)C, such

that

ε−1

t∫
0

‖uε(s)‖20,Ωε ds ≤ C̃

In fact, the last estimate is equivalent to (4.4).

Now, from (3.15) and as 〈(
Jεζ
)′′ (

uεζ
)
,
∂

∂t
uεζ

〉
≥ 0,

we have

1

2

∥∥∥∥∂uεζ∂t (t)

∥∥∥∥2

0,Ωε

+

t∫
0

a

(
∂uεζ
∂t

(s),
∂uεζ
∂t

(s)

)
ds+ lε

t∫
0

∥∥∥∥∂uεζ∂t (s)

∥∥∥∥2

0,Γε
1

ds

≤ 1
2

∥∥∥∥∂uεζ∂t (0)

∥∥∥∥2

0,Ωε

+

t∫
0

∥∥∥∥∂fε∂t (s)

∥∥∥∥
0,Ωε

∥∥∥∥∂uεζ∂t (s)

∥∥∥∥
0,Ωε

ds

(4.11)

By applying the inequality (4.6) for
∂

∂t
uεζ and the Young successively, we get∣∣∣∣∣∣

t∫
0

(
∂fε

∂t
(s),

∂uεζ
∂t

(s)

)
ds

∣∣∣∣∣∣ ≤ µ

8

t∫
0

∥∥∥∥∇∂uεζ∂t (s)

∥∥∥∥2

0,Ωε

ds+
4ε2h

2

µ

t∫
0

∥∥∥∥∂fε∂t (s)

∥∥∥∥2

0,Ωε

ds

+
3lε

4

t∫
0

∥∥∥∥∂uεζ∂t (s)

∥∥∥∥2

0,Γε
1

ds+
2hε

3lε

t∫
0

∥∥∥∥∂fε∂t (s)

∥∥∥∥2

0,Ωε

ds.

(4.12)
From (4.11), (4.12) and using (4.7) we obtain

1

2

∥∥∥∥∂uεζ∂t (t)

∥∥∥∥2

0,Ωε

+
µ

16

t∫
0

∥∥∥∥∇∂uεζ∂t (s)

∥∥∥∥2

0,Ωε

ds+
lε

16

t∫
0

∥∥∥∥∂uεζ∂t (s)

∥∥∥∥2

0,Γε
1

ds ≤

1

2

∥∥∥∥∂uεζ∂t (0)

∥∥∥∥2

0,Ωε

+
4ε2h

2

µ

t∫
0

∥∥∥∥∂fε∂t (s)

∥∥∥∥2

0,Ωε

ds+
2hε

3lε

t∫
0

∥∥∥∥∂fε∂t (s)

∥∥∥∥2

0,Ωε

ds

(4.13)

We must estimate
∂uεζ
∂t

(0). Starting from the equation (3.17) and taking into account

the assumptions (3.1), (3.3), then applying lemma 3.2, we conclude∥∥∥∥∂uεζ∂t (0)

∥∥∥∥
0,Ωε

≤ ‖fε(0)‖0,Ωε + ‖A(uε0)‖0,Ωε +
∥∥∥(Jεζ )′ (uε0)

∥∥∥
0,Ωε

≤ ‖fε(0)‖0,Ωε + 2
√

3µ ‖uε0‖2,Ωε + ε−1γ ‖uε0‖2,Ωε .
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We recall that ε ∈ ]0, 1[, by multiplying the last inequality by ε
5
2 and the fact that

ε3 ‖uε0‖
2
2,Ωε ≤ ‖û0‖22,Ω , we deduce

ε
5
2

∥∥∥∥∂uεζ∂t (0)

∥∥∥∥
0,Ωε

≤ c0 (4.14)

with

c0 =
∥∥∥f̂(0)

∥∥∥
0,Ω

+ 2
√

3µ ‖û0‖2,Ω + γ ‖û0‖2,Ω .

Consequently, it follows from (4.13)-(4.14) and passing to the limit when ζ → 0, we
find (after multiplying by 2ε5)

µ

8
ε5

t∫
0

∥∥∥∥∇∂uε∂t (s)

∥∥∥∥2

0,Ωε

ds+
l

8
ε4

t∫
0

∥∥∥∥∂uε∂t (s)

∥∥∥∥2

0,Γε
1

ds ≤ C ′ (4.15)

with

C ′ = (c0)
2

+
8h

2

µ

∥∥∥∥ ∂∂t f̂
∥∥∥∥2

L2(Q)

+
4h

3l

∥∥∥∥ ∂∂t f̂
∥∥∥∥2

L2(Q)

is a constant independent of ε.

We apply the inequality (4.6) for
∂uε

∂t
in the estimate (4.15), that implies that there

exists a constant C̃ ′ independent of ε such that

ε

t∫
0

∥∥∥∥∂uε∂t (s)

∥∥∥∥2

0,Ωε

ds ≤ C̃ ′.

Finally, passing this estimate to the fixed domain Ω to get (4.5). �

Theorem 4.2.Under the hypotheses of theorem 4.1 there exists a constant C indepen-
dent of ε such that∥∥∥∥∂p̂ε∂xi

∥∥∥∥
L2(0,T,H−1(Ω))

≤ C, i = 1, 2 and

∥∥∥∥∂p̂ε∂z
∥∥∥∥
L2(0,T,H−1(Ω))

≤ Cε. (4.16)

Proof. Let ξ in L2(0, T,H1
0 (Ω)), putting in (4.2) φ = ûε + ξ̃, where ξ̃ = (ξ, 0, 0) or

ξ̃ = (0, ξ, 0) and integrating over [0, t] we find for i = 1, 2,

t∫
0

(
∂p̂ε

∂xi
(s), ξ(s)

)
ds ≤

t∫
0

ε2

(
∂ûεi
∂t

(s) , ξ (s)

)
ds

+µ
∑

i,j=1,2

t∫
0

∫
Ω

ε2

(
∂ûεi
∂xj

+
∂ûεj
∂xi

)
(s)

∂ξ

∂xj
(s) dx′dzds

+
√

2α

t∫
0

∫
Ω

(∣∣∣D̃ (ûε + ξ̃
)∣∣∣− ∣∣∣D̃ (ûε)

∣∣∣) dx′dzds
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+µ
∑
i=1,2

t∫
0

∫
Ω

(
∂ûεi
∂z

+ ε2 ∂û
ε
3

∂xi

)
(s)

∂ξ

∂z
(s) dx′dzds−

t∫
0

(
f̂i (s) , ξ (s)

)
ds.

The Hölder inequality and estimates (4.3)-(4.5) show the continuity of the linear
functional

ξ →
t∫

0

(
∂p̂ε

∂xi
(s), ξ(s)

)
ds,

which proves (4.16) for i = 1, 2. In addition, case i = 3 follows from the choice
φ = ûε (t)± ξ with ξ ≡ (0, 0, ξ). �

4.3. Convergence uε and pε

To establish a limit solution of the problem, we introduce the following space,

Vz =

{
v = (v1, v2) ∈ L2(Ω)2 :

∂v

∂z
∈ L2(Ω)2; v = 0 on ΓL

}
.

From [6] , L2(0, T, Vz) is a Banach space. We show the following result:

Theorem 4.3. Under the hypotheses of theorem 4.1, for any solution {uε, pε}, there
exist u? = (u?1, u

?
2) ∈ L2(0, T, Vz) and p? ∈ L2(0, T, L2

0(Ω)) such that when ε tends to
0 we have the following convergences in L2(0, T, Vz) :

(ûε1, û
ε
2) ⇀ (u?1, u

?
2) , ε2

(
∂

∂t
ûε1,

∂

∂t
ûε2

)
⇀ 0 (4.17)

the following convergences in L2(Q) :

εûε3 ⇀ 0, ε3 ∂û
ε
3

∂t
⇀ 0, ε

∂ûεi
∂xj

⇀ 0, ε2 ∂û
ε
3

∂xj
⇀ 0, ε

∂ûε3
∂z

⇀ 0 (4.18)

(1 ≤ i, j ≤ 2) , and the convergence p̂ε ⇀ p? in L2(0, T, L2
0(Ω)).

Moreover, p? depends only on x′.

Proof. In particular (4.3), (4.4) we have∥∥∥∥∂ûεi∂z
∥∥∥∥2

L2(Q)

≤ C and ‖ûεi‖
2
L2(Q) ≤ C̃,

for i = 1, 2, we deduce the first convergence of (4.17). Similarly, from (4.15) and (4.5)
we find the second. For the rest of the proof, we use the same steps in the stationary
case as in [1, 5]. �
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5. On the limit model

By a classical semi continuity argument and using the convergence results of the
theorem 4.3, we deduce that (4.2) leads to the system

2∑
i=1

µ

∫
Ω

∂u?i
∂z

(t)
∂

∂z
(φ̂i − u?i (t))dx′dz

−
∫

Ω

p?(x′, t)

(
∂φ̂1

∂x1
+
∂φ̂2

∂x2

)
dx′dz

−
∫
ω

p?(x′, t)

(
φ̂1(x′, h(x′))

∂h

∂x1
+ φ̂2(x′, h(x′))

∂h

∂x2

)
dx′

+

2∑
l

i=1

∫
Γ1

u?i (t)
(
φ̂i − u?i (t)

)
dτ

+α

∫
Ω

(∣∣∣∣∣∂φ̂∂z
∣∣∣∣∣−
∣∣∣∣∂u?∂z (t)

∣∣∣∣
)
dx′dz +

∫
ω

k(|φ̂| − |u? (t) |)dx′

≥
2∑
i=1

(f̂i (t) , φ̂i − u?i (t)) ∀φ̂ ∈ Π (K) ,∀t ∈ ]0, T [ ,

u?i (x
′, z, 0) = û0,i, i = 1, 2



(5.1)

where

Π (K) =
{(
φ̂1, φ̂2

)
∈ H1(Ω)2 : φ̂ =

(
φ̂1, φ̂2, φ̂3

)
∈ K

}
.

Theorem 5.1. Under the assumptions of theorem 4.1, the limit solution {u?, p?} sat-
isfies:

− ∂

∂z
σ?i (t) = f̂i (t)− ∂

∂xi
p? (t) , i = 1, 2, in L2(Ω), (5.2)

u?i (0) = û0,i, i = 1, 2 (5.3)

for a.e. t ∈ ]0, T [, where σ? = (σ?i )i=1,2 checks the constitutive law of Bingham fluid,
as follows 

σ? = µ
∂u?

∂z
+α

∂u?/∂z

|∂u?/∂z|
, if

∣∣∣∣∂u?∂z
∣∣∣∣ 6= 0,

|σ?| ≤ α, if

∣∣∣∣∂u?∂z
∣∣∣∣ = 0

in Q (5.4)

Proof. Let ψ = (ψ1, ψ2) ∈ H1
0 (Ω)

2
, putting in (5.1) φ̂ = u? (t) ± λψ ( λ > 0) and

dividing the inequality obtained by λ, as λ tends to zero, for any t it follows that

2∑
i=1

µ

∫
Ω

∂u?i
∂z

(t)
∂

∂z
ψdx′dz −

∫
Ω

p?(x′, t)

(
∂ψ1

∂x1
+
∂ψ2

∂x2

)
dx′dz

+

2∑
i=1

α

∫
Ω

{∣∣∣∣∂u?∂z (t)

∣∣∣∣−1
∂u?i
∂z

(t)

}
∂

∂z
ψidx

′dz =

2∑
i=1

∫
Ω

f̂i (t)ψidx
′dz



Unsteady flow of Bingham fluid in a thin layer 787

when ∣∣∣∣∂u?∂z (t)

∣∣∣∣ 6= 0.

By Green’s formula, we obtain

−
2∑
i=1

∫
Ω

µ
∂2u?i
∂z2

(t)ψidx
′ +

2∑
i=1

∫
Ω

∂p?

∂xi
(x′, t)ψidx

′dz

−
2∑
i=1

α

∫
Ω

∂

∂z

{∣∣∣∣∂u?∂z (t)

∣∣∣∣−1
∂u?i
∂z

(t)

}
ψidx

′dz =

2∑
i=1

∫
Ω

f̂i (t)ψidx
′dz.

Therefore, from this equality and fact that f̂ ∈ L2 (Q) we get (5.2). Similarly, the
second case of (5.4) can be recovered by [7]. The condition (5.3) is a consequence
directly of (4.17), (4.18) and the condition ûε(0) = ûε0. �

Now we are in a position to deduce the equations corresponding for problem
(5.1)-(5.4).
Remark 5.1. Note that the term related to inertia effects does not exist in the limit
equation in (5.2), means that the limit problem (5.2) - (5.4) is in equilibrium at each
time instant. Therefore, the Reynolds equation is obtained in a manner similar to the
stationary case as in [1], and from [2] the Tresca boundary condition can be recovered.
Indeed, the case α = 0 corresponds to the Stokes flow, and has been studied in [8].
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Finite time blow-up for quasilinear wave
equations with nonlinear dissipation

Mohamed Amine Kerker

Abstract. In this paper we consider a class of quasilinear wave equations

utt −∆αu− ω1∆ut − ω2∆βut + µ|ut|m−2ut = |u|p−2u,

associated with initial and Dirichlet boundary conditions. Under certain condi-
tions on α, β,m, p, we show that any solution with positive initial energy, blows
up in finite time. Furthermore, a lower bound for the blow-up time will be given.

Mathematics Subject Classification (2010): 35B44, 35L05, 35L20, 35L72.

Keywords: Nonlinear wave equation, strong damping, blow-up.

1. Introduction

In this paper, we would like to study the blow-up of solutions of the following
initial boundary value problem of a quasilinear wave equation utt −∆αu− ω1∆ut − ω2∆βut + µ|ut|m−2ut = |u|p−2u, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1.1)
Here, Ω is a bounded domain of Rn with a smooth boundary ∂Ω. Additionally, we
assume that

u0 ∈W 1,α
0 (Ω), u1 ∈ L2(Ω), (1.2)

and α, β, ω1, ω2, µ,m, p are positive constants, with{
2 < p ≤ α∗ = αn

n−α , for n > α,

2 < p <∞, for n = α.
(1.3)

The operator ∆α is the classical α-Laplacian given by:

∆αu = div
(
|∇u|α−2∇u

)
.

Received 02 March 2020; Accepted 13 April 2020.
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Notice that ∆βut is a quasilinear strong damping term, and it is degenerate when
β > 2.

Nonlinear hyperbolic equations of the type (1.1) have been investigated in the
papers [2, 5, 7, 9, 15], and the references therein. Several examples of this type arise
in physics, for example, the problem (1.1) represents a longitudinal motion of a vis-
coelastic rod obeying the nonlinear Voight model.

Zhijiang [14] proved a blow up result for the problem (1.1) when the initial
energy is sufficiently negative. This result was extended by Messaoudi and Houari [8]
to a situation when the solution has negative initial energy. Liu and Wang [6] studied
a more general model including (1.1), and by improving the arguments in [14] and [8]
they established a blow-up result in the subcritical initial energy case, i.e. E(0) < d,
where E(0) is the initial energy and d is the depth of the potential well.

For α = β = m = 2, equation in (1.1) reduces to the linearly damped wave
equation

utt −∆u+ ω∆ut + µut = |u|p−2u. (1.4)

Gazzola and Squassina [3] studied (1.4) and gave a necessary and sufficient conditions
for blow-up if E(0) < d. Recently, Yang and Xu [13] gave a sufficient condition for
blow-up if E(0) > d. Sun et al. [12] obtained, for (1.4), an estimate of the lower bound

for the blow-up time when 2 < p ≤ 2(n−1)
n−2 . This work was extended by Guo and Liu

[4] to the case when the exponent p ∈
(

2(n−1)
n−2 , 2(n

2−2)
n−2

]
. Later, in the case of ω > 0,

Baghaei [1] improved the results in [12] and [4] by enlarging the upper bound for p
to 2∗.

In related work, Song and Xue [11] studied the following nonlinear wave equation
with strong damping

utt −∆u+

∫ t

0

g((t− τ)∆u(τ)dτ −∆ut = |u|p−2u. (1.5)

They introduced a new technique to obtain a finite time blow-up result with arbitrary
high initial energy in the case of linear strong damping. By applying the technique
similar to that in [11], Song [10] extended the result in [11] to the case of nonlinear
weak damping µ|ut|m−2ut in place of −∆ut in (1.5).

In this paper, by using the technique in [10], we give sufficient conditions for
finite time blow-up of solutions of (1.1), in the case E(0) ≥ d. Furthermore, by using
the techniques in [4], we obtain a lower bound for the blow-up time.

2. Preliminaries

We denote by ‖.‖p the Lp(Ω) norm (2 ≤ p < ∞), and by (., .) the L2 inner
product. We introduce the following functional space

H := L∞([0, T ),W 1,α
0 (Ω)) ∩W 1,∞([0, T ), L2(Ω))

∩W 1,β([0, T ),W 1,β(Ω)) ∩W 1,m([0, T ), Lm(Ω)),
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for T > 0, and the energy functional

E(t) :=
1

2
‖∇u‖αα +

1

2
‖ut‖22 −

1

p
‖u‖pp.

We define also the following constant

λ = B
− p
p−α
∗ ,

where B∗ is the best constant of the Sobolev embedding W 1,α
0 (Ω) ↪→ Lp(Ω). Finally,

we characterize the depth of the potential well d as follows:

d =

(
1

α
− 1

p

)
λ2.

Lemma 2.1. Let u be a global solution to problem (1.1). Then we have

E′(t) = −ω1‖∇ut‖22 − ω2‖∇ut‖ββ − µ‖ut‖
m
m, ∀t ≥ 0.

As a consequence, we have the following inequalities:

E(t) ≤ E(0), ∀t ≥ 0, (2.1)

and

−E′(t) ≥ ω1‖∇ut‖22, −E′(t) ≥ ω2‖∇ut‖ββ , −E′(t) ≥ µ‖ut‖mm. (2.2)

Subsequently, we state the following theorems (see [6]).

Theorem 2.2 (Local existence). Assume that conditions (1.2) and (1.3) hold. Then
problem (1.1) has a unique local solution u ∈ H.

Theorem 2.3 (Blow-up for E(0) < d). Assume (1.2) and (1.3) hold. Assume further
that α, β,m ≥ 2 and p > α > max {m,β}. Suppose E(0) < d and

‖∇u0‖α > λ. (2.3)

Then u blows up in finite time.

3. Finite time blow-up

In this section we extend the blow-up result in [8] to the case E(0) ≥ d. Here is
our main result:

Theorem 3.1 (Blow-up for E(0) ≥ d). Assume (1.2), (2.3) and (1.3) hold. Assume
further that α, β,m > 2, α > β and p > max {m,α}. Suppose E(0) ≥ d and

(ut(0), u(0)) > ME(0), (3.1)

where M > 0 is defined in (3.7), then the solution u ∈ H of (1.1) blows up in finite
time.



792 Mohamed Amine Kerker

Proof. Assume by contradiction that u(t) is a global solution of (1.1). Setting

F (t) :=
1

2
‖u(t)‖22,

it follows from (1.1) that

F ′′(t) = ‖ut‖22 + ‖u‖pp − ‖∇u‖αα
− ω1(∇ut,∇u)− ω2(|∇ut|β−2∇ut, u)− µ(|ut|m−2ut, u). (3.2)

By using Hölder’s inequality and Young’s inequality, we estimate the two last terms
in the right-hand side of the previous equation, as follows

(∇ut,∇u) ≤ η‖∇u‖22 + 1
4η‖∇ut‖

2
2, η > 0,

(|∇ut|β−2∇ut, u) ≤ 1
βσ

β‖∇u‖ββ + β−1
β σβ/(1−β)‖∇ut‖ββ , σ > 0,

(|ut|m−2ut, u) ≤ 1
mδ

m‖u‖mm + m−1
m δm/(1−m)‖ut‖mm, δ > 0.

So, thatnks to the convexity of the function yx/x for y ≥ 0 and x > 0, we have

δm

m
‖u‖mm ≤

s

2
δm‖u‖22 +

1− s
p

δm‖u‖pp, s =
p−m
p− 2

,

1

β
σβ‖∇u‖ββ ≤

θ

2
σβ‖∇u‖22 +

1− θ
α

σβ‖∇u‖αα, θ =
α− β
α− 2

.

Hence, (3.2) becomes

F ′′(t) ≥ ‖ut‖22 −
[
1 +

ω2(1− θ)
α

σβ
]
‖∇u‖αα −

µs

2
δm‖u‖22

−
(
ω1η +

ω2θ

2
σβ
)
‖∇u‖22 +

[
1− µ(1− s)

p
δm
]
‖u‖pp

− ω1

4η
‖∇ut‖22 − ω2

β − 1

β
σβ/(1−β)‖∇ut‖ββ − µ

m− 1

m
δ−

m
m−1 ‖ut‖mm. (3.3)

Next, since u(t) is global and E(0) ≥ d, then by Theorem 2.3, E(t) ≥ d, ∀t ≥ 0. Thus,
using the embedding Lα(Ω) ↪→ L2(Ω) and the inequality

zb ≤ (z + a)

(
z +

1

a

)
, z ≥ 0, 0 < b ≤ 1, a > 0,

we obtain

‖∇u‖22 ≤ c‖∇u‖2α
= c [‖∇u‖αα]

2/α

≤ c
(

1 +
1

d

)
[‖∇u‖αα + d]

≤ C [‖∇u‖αα + E(t)] , ∀t ≥ 0. (3.4)
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By using Lemma 2.1 and (2.2), we get

d

dt

{
F ′(t)−

[
1

4η
+
β − 1

β
σ

−β
β−1 +

m− 1

m
δ−

m
m−1

]
E(t)

}
≥ F ′′(t) +

ω1

4η
‖∇ut‖22 + ω2

β − 1

β
σ−

β
β−1 ‖∇ut‖ββ + µ

m− 1

m
δ−

m
m−1 ‖ut‖mm.

Adding and subtracting p(1− ε)E(t), for ε ∈ (0, 1), in the right-hand side of the last
inequality, and using (3.4) and the Poincaré inequality we obtain

d

dt

{
F ′(t)−

[
1

4η
+
β − 1

β
σ−

β
β−1 +

m− 1

m
δ−

m
m−1

]
E(t)

}
≥ ‖ut‖22 −

µs

2
δm‖u‖22 −

[
1 +

ω2(1− θ)
α

σβ
]
‖∇u‖αα

−
(
ω1η +

ω2θ

2
σβ
)
‖∇u‖22 +

[
1− µ(1− s)

p
δm
]
‖u‖pp

≥
[
1 +

p

2
(1− ε)

]
‖ut‖22 −

µs

2
δm‖u‖22 + k(ε)‖∇u‖αα

−
(
ω1η +

ω2θ

2
σβ
)
‖∇u‖22 +

[
ε− µ(1− s)

p
δm
]
‖u‖pp − p(1− ε)E(t)

≥
[
1 +

p

2
(1− ε)

]
‖ut‖22 −

µs

2
δm‖u‖22 + γ(ε)‖∇u‖22

+

[
ε− µ(1− s)

p
δm
]
‖u‖pp − [k(ε) + p(1− ε)]E(t)

≥
[
1 +

p

2
(1− ε)

]
‖ut‖22 +

{
γ(ε)B − µs

2
δm
}
‖u‖22

+

[
ε− µ(1− s)

p
δm
]
‖u‖pp − [k(ε) + p(1− ε)]E(t), (3.5)

where

k(ε) =
1

α

[
p(1− ε)− α− ω2(1− θ)σβ

]
,

γ(ε) =
k(ε)

C
− ω1η −

ω2θ

2
σβ ,

and B is the best constant of Poincaré inequality

‖∇u‖22 ≥ B‖u‖22.

Therefore, taking η = ε, σ = ε,

δ =

[
pε

µ(1− s)

]1/m
,

setting

γ1(ε) =
1

4ε
+
β − 1

β
ε−

β
β−1 +

m− 1

m

(
1− s
pε

)− 1
m−1

,
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and substituting in (3.5), we arrive at

d

dt
[F ′(t)− γ1(ε)E(t)] ≥

[
1 +

p

2
(1− ε)

]
‖ut‖22

+

[
γ(ε)B − ps

2(1− s)
ε

]
‖u‖22 − [k(ε) + p(1− ε)]E(t).

By using the Schwarz inequality, we have

2
[
1 + p

2 (1− ε)
]1/2 [

γ(ε)B − ps
2(1−s)ε

]1/2
(ut, u)

≤
[
1 + p

2 (1− ε)
]
‖ut‖22 +

[
γ(ε)B − ps

2(1−s)ε
]
‖u‖22.

Consequently, we obtain

d

dt
[F ′(t)− γ1(ε)E(t)] ≥ a(ε)(ut, u)− [k(ε) + p(1− ε)]E(t)

= a(ε) [F ′(t)− γ2(ε)E(t)] , (3.6)

where

a(ε) = 2
[
1 + p

2 (1− ε)
]1/2 [

γ(ε)B − ps
2(1−s)ε

]1/2
,

γ2(ε) = k(ε)+p(1−ε)
a(ε) .

Since

γ(ε)B − ps

2(1− s)
ε→


B(p−α)
αC > 0 as ε→ 0+

−
[
α+ω2(1−θ)

αC + ω1 + ω2θ
2

]
B − ps

2(1−s) < 0 as ε→ 1−,

then, there exists ε∗ ∈ (0, 1), such that

a(ε∗) = 0 and a(ε) > 0, ∀ε ∈ (0, ε∗).

Hence, we have

γ1(ε)− γ2(ε)→
{

+∞ as ε→ 0+

−∞ as ε→ ε−∗ .

Therefore, there exists ε0 ∈ (0, ε∗), such that γ1(ε0) = γ2(ε0) > 0. So, by setting

L(t) = F ′(t)− γ1(ε0)E(t),

M = γ1(ε0), (3.7)

and by using (2.3), we obtain

L(0) = (ut(0), u(0))− γ1(ε0)E(0)

> (ut(0), u(0))−ME(0) > 0.

Moreover, with this choice of ε0, (3.6) becomes

d

dt
L(t) ≥ a(ε0)L(t),



Finite time blow-up for quasilinear wave equations 795

which gives

L(t) ≥ L(0)ea(ε0)t, ∀t ≥ 0,

and hence

F ′(t) ≥ L(0)ea(ε0)t, ∀t ≥ 0.

By integrating this last inequality over (0, t), we get

‖u(t)‖22 = 2F (t) ≥ 2F (0) + 2
L(0)

a(ε0)

[
ea(ε0)t − 1

]
, ∀t ≥ 0. (3.8)

On the other hand, by using Hölder’s inequality and (2.2), we have

‖u(t)‖2 ≤ ‖u(0)‖2 +

∫ t

0

‖uτ (τ)‖2dτ

≤ ‖u(0)‖2 + C

∫ t

0

‖uτ (τ)‖mdτ

≤ ‖u(0)‖2 + Ct
m−1
m

∫ t

0

‖uτ (τ)‖mmdτ

≤ ‖u(0)‖2 + Ct
m−1
m

∫ t

0

−1

µ

dE(τ)

dτ
dτ

≤ ‖u(0)‖2 + Ct
m−1
m

[
E(0)− E(t)

µ

]1/m
≤ ‖u(0)‖2 + C

[
E(0)

µ

]1/m
t
m−1
m ,

which clearly contradicts (3.8). �

4. Lower bound for the blow-up time

In this section, we give a lower bound for the blow-up time Tmax. To this end,
we define

G(t) :=
1

p
‖u(t)‖pp.

Theorem 4.1. Let u be the solution of (1.1), and assume that{
2 < p ≤ α(n−2)+2n

2(n−α) , for n > α,

2 < p <∞, for n = α.

Then

Tmax ≥
∫ +∞

G(0)

{
τ +A1τ

2
α (p−1) +A2

}−1
dτ,

where A1 and A2 are positive constants to be determined later in the proof.



796 Mohamed Amine Kerker

Proof. By using inequality (2.1), we have

1

2
‖ut‖22 +

1

α
‖∇u‖αα = E(t) +

1

p
‖u(t)‖pp ≤ E(0) +G(t). (4.1)

Next, using the Schwarz inequality, the Sobolev-type inequality

‖u‖q ≤ Cq‖∇u‖α, ∀q ∈ [1, α∗], ∀u ∈W 1,α
0 (Ω), (4.2)

inequality (4.1) yields

G′(t) = (|u|p−2u, ut)

≤ 1

2
‖ut‖22 +

1

2
‖u‖2(p−1)2(p−1)

≤ 1

2
‖ut‖22 +

C
2(p−1)
2(p−1)

2
‖∇u‖2(p−1)α

≤ E(0) +G(t) +
C

2(p−1)
2(p−1)

2
[αE(0) + αG(t)]

2
α (p−1)

. (4.3)

From (4.3) and Jensen’s inequality, we obtain the differential inequality

G′(t) ≤ G(t) +A1 [G(t)]
2
α (p−1)

+A2, (4.4)

with

A1 = C
2(p−1)
∗ 2

2
α (p−1)−2α

2
α (p−1) and A2 = E(0) +A1 [E(0)]

2
α (p−1)

.

Hence, we get

Tmax ≥
∫ Tmax

0

{
G(s) +A1 [G(s)]

2
α (p−1)

+A2

}−1
G′(s)ds.

Since lim
t→T−

max

G(t) = +∞, so the previous inequality implies

Tmax ≥
∫ +∞

G(0)

{
τ +A1τ

2
α (p−1) +A2

}−1
dτ.

�

In the next theorem, when n > α, the upper bound for p is enlarged. We define

H(t) :=
1

σ
‖u(t)‖σσ,

where σ = α(n−2)+2n
2(n−α) . Then, we have

Theorem 4.2. Let u be the solution of (1.1), and assume that

α(n− 2) + 2n

2(n− α)
< p ≤ αn(2n− α+ 2)− 2α2

2n(n− α)
. (4.5)

Then

Tmax ≥
∫ +∞

H(0)

{
B1τ

b1 +B2τ
b2 +B3

}−1
dτ,

where B1, B2, B3, b1 and b2 are positive constants to be determined later in the proof.
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Proof. By using inequality (2.1), we have

1

2
‖ut‖22 +

1

α
‖∇u‖αα = E(t) +

1

p
‖u(t)‖pp ≤ E(0) +

1

p
‖u(t)‖pp. (4.6)

Using the Schwarz inequality, the Sobolev-type inequality (4.2), with q = α∗, and
inequality (4.6) we get

H ′(t) = (|u|σ−2u, ut)

≤ 1

2
‖ut‖22 +

1

2
‖u‖2(σ−1)2(σ−1)

≤ 1

2
‖ut‖22 +

Cα
∗

∗
2
‖∇u‖α

∗

α

≤ E(0) +
1

p
‖u‖pp +

Cα
∗

∗
2

[
αE(0) +

α

p
‖u‖pp

] n
n−α

. (4.7)

Next, the interpolation inequality, the Sobolev inequality and Young’s inequality give

‖u‖pp ≤ ‖u‖
θp
α∗ .‖u‖(1−θ)pσ , θ =

α∗(p− σ)

p(α∗ − σ)
,

≤ Cθp∗ ‖∇u‖θpα .‖u‖(1−θ)pσ ,

≤ 1

α
‖∇u‖αα +B‖u‖rσ, (4.8)

where

B = C∗

(
1− θp

α

)
(pθC∗)

pθ
α−pθ and r =

αp(1− θ)
α− θp

.

Note that in virtue of (4.5), we have α > θp. Hence, by (2.1) we have

‖u‖pp ≤ E(0) +
1

p
‖u‖pp +B‖u‖rσ, (4.9)

which gives
1

p
‖u‖pp ≤

1

p− 1
(E(0) +B‖u‖rσ) .

Inserting this last inequality in (4.7), and using Jensen’s inequality, we obtain

H ′(t) ≤ pE(0)

p− 1
+

B

p− 1
‖u‖rσ +

Cα
∗

∗
2

[
αpE(0)

p− 1
+

αB

p− 1
‖u‖rσ

] n
n−α

= B1 (H(t))
b1 +B2 (H(t))

b2 +B3, (4.10)

where

B1 =
Bσr

p− 1
, B2 =

Cα
∗

∗
2

2
α

n−α

[
αBσr

p− 1

] n
n−α

,

B3 =
pE(0)

p− 1
+
Cα

∗

∗
2

2
α

n−α

[
αpE(0)

p− 1

] n
n−α

,

b1 =
r

σ
, b2 =

rn

σ(n− α)
.
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Finally, integrating inequality (4.10) over (0, Tmax) we get

Tmax ≥
∫ Tmax

0

{
B1 (H(s))

b1 +B2 (H(s))
b2 +B3

}−1
H ′(s)ds,

and so

Tmax ≥
∫ +∞

H(0)

{
B1τ

b1 +B2τ
b2 +B3

}−1
dτ.

�
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Global nonexistence of solution for coupled
nonlinear Klein-Gordon with degenerate
damping and source terms
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Abstract. In this article we consider a coupled system of nonlinear Klein-Gordon
equations with degenerate damping and source terms. We prove, with positive
initial energy, the global nonexistence of solutions by concavity method.
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1. Introduction

We consider the following system

utt −∆ut − div
(
|∇u|α−2∇u

)
− div

(
|∇ut|β1−2∇ut

)
+a1 |ut|m−2

ut +m2
1u = f1 (u, v) ,

vtt −∆vt − div
(
|∇v|α−2∇v

)
− div

(
|∇vt|β2−2∇vt

)
+a2 |vt|r−2

vt +m2
2v = f2 (u, v) ,

(1.1)

where u = u (t, x) , v = v (t, x) , x ∈ Ω, a bounded domain of RN (N ≥ 1) with a
smooth boundary ∂Ω, t > 0 and a1, a2, b1, b2, m1, m2 > 0 and β1, β2, m, r ≥ 2,
α > 2, and the two functions f1 (u, v) and f2 (u, v) given by

f1(u, v) = b1|u+ v|2(ρ+1)(u+ v) + b2|u|ρu|v|(ρ+2)

f2(u, v) = b1|u+ v|2(ρ+1)(u+ v) + b2|u|(ρ+2)|v|ρv.
(1.2)

Received 22 January 2020; Accepted 10 May 2020.
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The system (1.1) is supplemented by the following initial and boundary conditions{
(u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω
u(x) = v(x) = 0 x ∈ ∂Ω.

(1.3)

Originally the interaction between the source term and the damping term in the wave
equation is given by

utt −∆u+ a |ut|m−2
ut = b |u|p−2

u, in Ω× (0, T ) , (1.4)

where Ω is a bounded domain of RN , N ≥ 1 with a smooth boundary ∂Ω, has an
exciting history. It has been shown that the existence and the asymptotic behavior of
solutions depend on a crucial way on the parameters m, p and on the nature of the
initial data. More precisely, it is well known that in the absence of the source term
|u|p−2

u then a uniform estimate of the form

‖ut (t)‖2 + ‖∇u (t)‖2 ≤ C, (1.5)

holds for any initial data (u0, u1) = (u(0), ut(0)) in the energy space H1
0 (Ω)×L2 (Ω) ,

where C is a positive constant independent of t. The estimate (1.5) shows that any
local solution u of problem (1.4) can be continued in time as long as (1.5) is verified.
This result has been proved by several authors. See for example [2, 5, 7, 15, 20, 3]. On

the other hand in the absence of the damping term |ut|m−2
ut, the solution of (1.4)

ceases to exist and there exists a finite value T ∗ such that

lim
t→T∗

‖u (t)‖p = +∞, (1.6)

the reader is refereed to Ball [1] and Kalantarov & Ladyzhenskaya [6] for more details.
When both terms are present in equation (1.4), the situation is more delicate. This
case has been considered by Levine in [8, 9], where he investigated problem (1.4) in
the linear damping case (m = 2) and showed that any local solution u of (1.4) cannot
be continued in (0,∞)×Ω whenever the initial data are large enough (negative initial
energy). The main tool used in [8] and [9] is the ”concavity method”. This method
has been a widely applicable tool to prove the blow up of solutions in finite time of
some evolution equations. The basic idea of this method is to construct a positive
functional θ (t) depending on certain norms of the solution and show that for some
γ > 0, the function θ−γ (t) is a positive concave function of t. Thus there exists T ∗

such that lim
t→T∗

θ−γ (t) = 0. Since then, the concavity method became a powerful and

simple tool to prove blow up in finite time for other related problems. Unfortunately,
this method is limited to the case of a linear damping. Georgiev and Todorova [4]
extended Levine’s result to the nonlinear damping case (m > 2). In their work, the
authors considered the problem (1.4) and introduced a method different from the one
known as the concavity method. They showed that solutions with negative energy
continue to exist globally ’in time’ if the damping term dominates the source term
(i.e.m ≥ p) and blow up in finite time in the other case (i.e.p > m) if the initial energy
is sufficiently negative. Their method is based on the construction of an auxiliary
function L which is a perturbation of the total energy of the system and satisfies the
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differential inequality
dL (t)

dt
≥ ξL1+ν (t) (1.7)

In [0,∞) , where ν > 0. Inequality (1.7) leads to a blow up of the solutions in finite

tim t ≥ L (0)
−ν
ξ−1ν−1, provided that L (0) > 0. However the blow up result in

[4] was not optimal in terms of the initial data causing the finite time blow up of
solutions. Thus several improvement have been made to the result in [4] (see for
example [10, 11, 12, 18]. In particular, Vitillaro in [18] combined the arguments in [4]
and [11] to extend the result in [4] to situations where the damping is nonlinear and
the solution has positive initial energy.
In [19], Yang, studied the problem

utt −∆ut − div
(
|∇u|α−2∇u

)
− div

(
|∇ut|β−2∇ut

)
+a |ut|m−2

ut = b|u|p−2u,
(1.8)

in (0, T ) × Ω with initial conditions and boundary condition of Dirichlet type. He
showed that solutions blow up in finite time T ∗ under the condition p > max {α,m} ,
α > β, and the initial energy is sufficiently negative (see condition (ii) in [19][Theorem
2.1]). In fact this condition made it clear that there exists a certain relation between
the blow-up time and |Ω|. ([19], [Remark 2]).
Messaoudi and Said-Houari [13] improved the result in [19] and showed that the blow
up of solutions of problem (1.8) takes place for negative initial data only regardless
of the size of Ω.
The absence of the terms m1u

2 and m2v
2, equations (1.1) take the form:

utt −∆ut − div
(
|∇u|α−2∇u

)
− div

(
|∇ut|β1−2∇ut

)
+a1 |ut|m−2

ut = f1 (u, v) ,

vtt −∆vt − div
(
|∇v|α−2∇v

)
− div

(
|∇vt|β2−2∇vt

)
+a2 |vt|r−2

vt = f2 (u, v) ,

In [16] Rahmoun. A and Ouchenane. D proved the global nonexistence result, Under
an appropriate assumptions on the initial data and under some restrictions on the
parameter ; β1;β2; m; r and on the nonlinear functions f1 and f2.

2. Preliminaries

In this section, we introduce some notations and some technical lemmas to be
used throughout this paper. By ‖.‖q, we denote the usual Lq(Ω)-norm. The constants
C, c, c1, c2, . . . , used throughout this paper are positive generic constants, which may
be different in various occurrences. We define

F (u, v) =
1

2 (ρ+ 2)

[
b1 |u+ v|2(ρ+2)

+ 2b2 |uv|ρ+2
]
.

Then, it is clear that, from (1.2), we have

uf1 (u, v) + vf2 (u, v) = 2 (ρ+ 2)F (u, v) . (2.1)
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The following lemma was introduced and proved in [14]

Lemma 2.1. There exist two positive constants c0 and c1 such that

c0
2 (ρ+ 2)

(
|u|2(ρ+2)

+ |v|2(ρ+2)
)
≤ F (u, v) ≤ c1

2 (ρ+ 2)

(
|u|2(ρ+2)

+ |v|2(ρ+2)
)
. (2.2)

The energy functional is given by

E (t) =
1

2

(
‖ut‖22 + ‖vt‖22

)
+

1

α
(‖∇u‖αα + ‖∇v‖αα)

+m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2 −

∫
Ω

F (u, v) dx. (2.3)

Let us define the constant rα as follows

rα =
Nα

N − α
, if N > α, rα > α if N = α, and rα =∞ if N < α. (2.4)

The inequality below is the key to prove the global nonexistence of solution. A similar
version of this lemma was first introduced in [17]

Lemma 2.2. Suppose that α > 2, and 2 < 2(ρ+ 2) < rα. Then there exists η > 0 such
that the inequality

‖u+ v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2 ≤ η (‖∇u‖αα + ‖∇v‖αα)
2(ρ+2)

α , (2.5)

holds.

Proof. It is clear that by using the Minkowski’s inequality, we get

‖u+ v‖22(ρ+2) ≤ 2(‖u‖22(ρ+2) + ‖v‖22(ρ+2)),

the embedding W 1,α
0 ↪→ L2(ρ+2) (Ω) gives

‖u‖22(ρ+2) ≤ C‖∇u‖
2
α ≤ C(‖∇u‖αα)

2
α ≤ C(‖∇u‖αα + ‖∇v‖αα)

2
α ,

and similary, we have

‖v‖22(ρ+2) ≤ C‖∇u‖
α
α + ‖∇v‖αα)

2
α .

Thus, we deduce from the above estimates that

‖u+ v‖22(ρ+2) ≤ C(‖∇u‖αα + ‖∇v‖αα)
2
α , (2.6)

also, Hölder and Young’s inequalities give

‖uv‖(ρ+2) ≤ ‖u‖2(ρ+2)‖v‖2(ρ+2)

≤ C(‖∇u‖22(ρ+2) + ‖∇v‖22(ρ+2))

≤ C(‖∇u‖αα + ‖∇v‖αα)
2
α . (2.7)

Collecting the estimates (2.6) and (2.7), then (2.5) holds. This completes the proof of
Lemma 2.2 �
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Lemma 2.3. Let v > 0 be a real positive number and L be a solution of the ordinary
differential inequality

dL (t)

dt
≥ ξL1+v (t) , (2.8)

defined in [0,∞) .

If L (0) > 0, then the solution ceacesto exist for t ≥ L (0)
−v
ξ−1v−1.

Proof. Direct integration of (2.8) gives

L−v (0)− L−v (t) ≥ ξvt.

Thus we obtain the following estimate

Lv (t) ≥
[
L−v (0)− ξvt

]−1
. (2.9)

It is clear that the right-hand side of (2.9) is unbounded when

ξvt = L−v (0) .

This completes the proof. �

In the following lemma, we show that the total energy of our system is a nonin-
creasing function of t.

Lemma 2.4. Let (u, v) be the solution of system (1.1)-(1.3), then the energy functional
is a non-increasing function for all t ≥ 0

dE (t)

dt
= −‖∇ut‖22 − ‖∇vt‖22 − ‖∇ut‖

β1

β1
− ‖∇vt‖β2

β2

−a1‖ut‖mm − a2‖vt‖rr −m2
1 ‖u‖

2
2 −m

2
2 ‖v‖

2
2 . (2.10)

Proof. We multiply the first equation in (1.1) by ut and second equation by vt and
integrate over Ω, using integration by parts, we obtain (2.10). �

3. Global nonexistence result

In this section, we prove that, under some restrictions on the initial data and
under som restrictions on the parameter α, β1, β2,m, r, then the lifespan of solution
of problem (1.1)- (1.3) is finite

Theorem 3.1. Suppose that β1, β2, m, r ≥ 2, α > 2, ρ > −1 such that β1, β2 < α, and
max {m, r} < 2(ρ + 2) < rα, where rα is the Sobolev critical exponent of W 1,α

0 (Ω) .
defined in (2.4). Assume further that

E (0) < E1, (‖∇u0‖αα + ‖∇v0‖αα)
1
α +m2

1 ‖u0‖22 +m2
2 ‖v0‖22 > ζ1.

Then, any weak solutions of (1.1)-(1.3) cannot exist for all time. Here the constants
E1 and ζ1 are defined in (3.1).
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In order to prove our result and for the sake of simplicity, we take b1 = b2 = 1
and introduce the following

B = η
1

2(ρ+2) , ζ1 = B
−2(ρ+2)

2(ρ+2)−α , E1 =

(
1

α
− 1

2 (ρ+ 2)

)
ζα1 , (3.1)

where η is the optimal constant in (2.5).
The following lemma allows us to prove a blow up result for a large class of initial
data. This lemma is similar to the one in [17] and has its origin in [18]

Lemma 3.2. Let (u, v) be a solution of (1.1)-(1.3). Assume that α > 2,
ρ > −1. Assume further that E (0) < E1 and

(‖∇u0‖αα + ‖∇v0‖αα)
1
α +m2

1 ‖u0‖22 +m2
2 ‖v0‖22 > ζ1. (3.2)

Then there exists a constant ζ2 > ζ1 such that

(‖∇u‖αα + ‖∇v‖αα)
1
α +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2 > ζ2, (3.3)

and [
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

] 1
2(ρ+2) ≥ Bζ2, ∀t ≥ 0. (3.4)

Proof. We first note, by (2.3) and the definition of B, that

E (t) ≥ 1

α
(‖∇u‖αα + ‖∇v‖αα) +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

− 1

2 (ρ+ 2)

[
|u+ v|2(ρ+2)

+ 2 |uv|ρ+2
]

≥ 1

α
(‖∇u‖αα + ‖∇v‖αα) +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

− η

2 (ρ+ 2)
(‖∇u‖αα + ‖∇v‖αα)

2(ρ+2)
α

≥ 1

α
ζα − η

2 (ρ+ 2)
ζ2(ρ+2), (3.5)

where ζ =
[
‖∇u‖αα + ‖∇v‖αα +m2

1 ‖u‖
α
α +m2

2 ‖v‖
α
α

] 1
α . It is not hard to verify that g

is increasing for 0 < ζ < ζ1, decreasing for ζ > ζ1, g (ζ)→ −∞ as ζ → +∞, and

g (ζ1) =
1

α
ζα1 −

B2(ρ+2)

2 (ρ+ 2)
ζ

2(ρ+2)
1 = E1,

where ζ1 is given in (3.1). Therefore, since E (0) < E1, there exists ζ2 > ζ1 such that
g (ζ2) = E (0) .

If we set ζ0 = [‖∇u (0) ‖αα + ‖∇v (0) ‖αα]
1
α + m2

1 ‖u (0)‖22 + m2
2 ‖v (0)‖22 , then by (3.5)

we have g (ζ0) ≤ E (0) = g (ζ2) , which implies that ζ0 ≥ ζ2.
Now, establish (3.3), we suppose by contradiction that

(‖∇u0‖αα + ‖∇v0‖αα)
1
α +m2

1 ‖u0‖22 +m2
2 ‖v0‖22 < ζ2,
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for some t0 > 0; by the continuity of ‖∇u (.)‖αα+‖∇v (.) ‖αα+m2
1 ‖u (.)‖22 +m2

2 ‖v (.)‖22
we can choose t0 such that

(‖∇u (t0) ‖αα + ‖∇v (t0) ‖αα)
1
α +m2

1 ‖u (t0)‖22 +m2
2 ‖v (t0)‖22 > ζ1.

Again, the use of (3.5) leads to

E (t0) ≥ g (‖∇u (t0) ‖αα + ‖∇v (t0) ‖αα) +m2
1 ‖u (t0)‖22 +m2

2 ‖v (t0)‖22 > g (ζ2) = E (0) .

This is impossible since E (t) ≤ E (0) , for all t ∈ [0, T ) . Hence, (3.3) is established.
To prove (3.4), we make use of (2.3) to get

1

α
(‖∇u0‖αα + ‖∇v0‖αα) +m2

1 ‖u0‖22 +m2
2 ‖v0‖22

≤ E (0) +
1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
.

Consequently, (3.3) yields

1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
≥ 1

α
(‖∇u‖αα + ‖∇v‖αα)− E (0)

≥ 1

α
ζα2 − E (0)

≥ 1

α
ζα2 − g (ζ2) (3.6)

=
B2(ρ+2)

2 (ρ+ 2)
ζ

2(ρ+2)
2 .

Therefore, (3.6) and (3.1) yield the desired result. �

Proof. (of Theorem 3.1). We suppose that the solution exists for all time and set

H (t) = E1 − E (t) . (3.7)

By using (2.3) and (3.7) we get

H
′
(t) = ‖∇ut‖22 + ‖∇vt‖22 + ‖∇ut‖β1

β1
+ ‖∇vt‖β2

β2

+a1‖ut‖mm + a2‖vt‖rr +m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2 .

From (2.10), It is clear that for all t ≥ 0, H
′
(t) > 0. Therefore, we have

0 < H (0) ≤ H (t) = E1 −
1

2

(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
− 1

α
(‖∇u‖αα + ‖∇v‖αα)

+
1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
. (3.8)

From (2.3) and (3.3), we obtain, for all t ≥ 0,

E1 −
1

2

(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
− 1

α
(‖∇u‖αα + ‖∇v‖αα)

< E1 −
1

α
ζα1 = − 1

2 (ρ+ 2)
ζα1 < 0.
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Hence,

0 < H (0) ≤ H (t) ≤ 1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
, ∀t ≥ 0.

Then by (2.2), we have

0 < H (0) ≤ H (t) ≤ c1
2 (ρ+ 2)

[
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

]
, ∀t ≥ 0. (3.9)

We then define

L (t) = H1−σ (t) + ε

∫
Ω

(uut + vvt))dx, (3.10)

for ε small to be chosen later and

0 < σ ≤ min

{
1

2
,

α−m
2 (ρ+ 2) (m− 1)

,
α− r

2 (ρ+ 2) (r − 1)
,

(α− 2)

2 (ρ+ 2)
,

α− β1

2 (ρ+ 2) (β1 − 1)
,

α− β2

2 (ρ+ 2) (β2 − 1)

}
. (3.11)

Our goal is to show that L (t) satisfies the differential inequality (1.7). Indeed, taking
the derivative of (3.10), using (1.1) and adding subtracting εkH(t), we obtain

L
′
(t) = (1− σ)H−σ (t)H

′
(t) + εkH (t)

+ε

(
1 +

k

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε (1− k)

∫
Ω

F (u, v)− εkE1 (3.12)

−ε
∫

Ω

∇u∇utdx− ε
∫

Ω

∇v∇vtdx

+ε

(
k

α
− 1

)
(‖∇u‖αα + ‖∇v‖αα)

−ε
∫

Ω

|∇ut|β1−2∇ut∇udx− ε
∫

Ω

|∇vt|β2−2∇vt∇vdx

−εa1

∫
Ω

|ut|m−2
utudx− εa2

∫
Ω

|vt|r−2
vtvdx.

We then exploit Young’s inequality to get for µi, λi, δi > 0 i = 1, 2∫
Ω

∇u∇utdx ≤
1

4µ1
‖∇u‖22 + µ1 ‖∇ut‖22 ,∫

Ω

∇v∇vtdx ≤
1

4µ2
‖∇v‖22 + µ2 ‖∇vt‖22 , (3.13)

and ∫
Ω

|∇ut|β1−1∇udx ≤ λβ1

1

β1
‖∇u‖β1

β1
+
β1 − 1

β1
λ
−β1/(β1−1)
1 ‖∇ut‖β1

β1
,∫

Ω

|∇vt|β2−1∇vdx ≤ λβ2

2

β2
‖∇v‖β2

β2
+
β2 − 1

β2
λ
−β2/(β2−1)
2 ‖∇vt‖β1

β1
, (3.14)
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and also ∫
Ω

|ut|m−2
utudx ≤

δm1
m
‖u‖mm +

m− 1

m
δ
−m/(m−1)
1 ‖ut‖mm ,∫

Ω

|vt|r−2
vtvdx ≤

δr2
r
‖v‖rr +

r − 1

r
δ
−r/(r−1)
2 ‖vt‖rr . (3.15)

A substitution of (3.13)-(3.15)) in (3.12) and using (2.2) yields

L
′
(t) ≥ (1− σ)H−σ (t)H

′
(t) + εkH (t)

+ε

(
1 +

k

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε

(
c0

2 (ρ+ 2)
− kc1

2 (ρ+ 2)

)(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
− εkE1

− ε

4µ1
‖∇u‖22 − µ1ε ‖∇ut‖22 −

ε

4µ2
‖∇v‖22 − εµ2 ‖∇vt‖22

+ε

(
k

α
− 1

)
(‖∇u‖αα + ‖∇v‖αα)

−ελ
β1

1

β1
‖∇u‖β1

β1
− εβ1 − 1

β1
λ
−β1/(β1−1)
1 ‖∇ut‖β1

β1

−ελ
β2

2

β2
‖∇v‖β2

β2
− εβ2 − 1

β2
λ
−β2/(β2−1)
2 ‖∇vt‖β1

β1

−a1ε
δm1
m
‖u‖mm − a1ε

m− 1

m
δ
−m/(m−1)
1 ‖ut‖mm

−a2ε
δr2
r
‖v‖rr − a2ε

r − 1

r
δ
−r/(r−1)
2 ‖vt‖mm . (3.16)

Let us choose δ1, δ2, µ1, µ2, λ1, and λ2 such that

δ
−m/(m−1)
1 = M1H

−σ (t)

δ
−r/(r−1)
2 = M2H

−σ (t)

µ1 = M3H
−σ (t)

µ2 = M4H
−σ (t)

λ
−β1/(β1−1)
1 = M5H

−σ (t)

λ
−β2/(β2−1)
2 = M6H

−σ (t) ,

(3.17)

for M1, M2, M3, M4, M5 and M6 large constants to be fixed later. Thus, by using
(3.17), and for

M = M3 +M4 + (β1 − 1)M5/β1 + (β2 − 1)M6/β2 + (m− 1)M1/m+ (r − 1)M2/r,
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then, inequality (3.16) takes the form

L
′
(t) ≥ ((1− σ)− εM)H−σ (t)H

′
(t) + εkH (t)

+ε

(
1 +

k

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε

(
c0

2 (ρ+ 2)
− kc1

2 (ρ+ 2)

)(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
−εkE1 + ε

(
k

α
− 1

)
(‖∇u‖αα + ‖∇v‖αα)

− ε

4M3
Hσ (t) ‖∇u‖22 −

ε

4M4
Hσ (t) ‖∇v‖22

−a1ε

m
M
−(m−1)
1 Hσ(m−1) (t) ‖u‖mm

−a2ε

r
M
−(r−1)
2 Hσ(r−1) (t) ‖v‖rr

−εM
−(β1−1)
5

β1
Hσ(β1−1) (t) ‖∇u‖β1

β1

−εM
−(β2−1)
6

β2
Hσ(β2−1) (t) ‖∇u‖β2

β2
. (3.18)

We then use the two embedding

L2(ρ+2) (Ω) ↪→ Lm (Ω) ,W 1,α
0 ↪→ L2(ρ+2) (Ω) ,

and (3.9) to get

Hσ(m−1) (t) ‖u‖mm ≤ c2(‖u‖2σ(m−1)(ρ+2)+m
2(ρ+2)

+ ‖v‖2σ(m−1)(ρ+2)
2(ρ+2) ‖u‖m2(ρ+2))

≤ c2(‖∇u‖2σ(m−1)(ρ+2)+m
α

+ ‖∇v‖2σ(m−1)(ρ+2)
α ‖∇u‖mα ). (3.19)

Similarly, the embedding L2(ρ+2) (Ω) ↪→ Lr (Ω) , W 1,α
0 ↪→ L2(ρ+2) (Ω) and (3.9) give

Hσ(r−1) (t) ‖v‖rr ≤ c3(‖v‖2σ(r−1)(ρ+2)+r
2(ρ+2)

+ ‖u‖2σ(r−1)(ρ+2)
2(ρ+2) ‖v‖r2(ρ+2))

≤ c3(‖∇v‖2σ(r−1)(ρ+2)+r
α

+ ‖∇u‖2σ(r−1)(ρ+2)
α ‖∇v‖rα). (3.20)

Furthermore, the two embedding W 1,α
0 ↪→ L2(ρ+2) (Ω) , Lα(Ω) ↪→ L2(Ω), yields

Hσ (t) ‖∇u‖22 ≤ c4

(
‖u‖2σ(ρ+2)

2(ρ+2) ‖∇u‖
2
2 + ‖v‖2σ(ρ+2)

2(ρ+2) ‖∇u‖
2
2

)
≤ c4

(
‖∇u‖2σ(ρ+2)+2

α + ‖∇v‖2σ(ρ+2)
α ‖∇u‖2α

)
, (3.21)
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and

Hσ (t) ‖∇v‖22 ≤ c5

(
‖∇u‖2σ(ρ+2)

α ‖∇v‖2α + ‖∇v‖2σ(ρ+2)
α ‖∇v‖2α

)
(3.22)

= c5

(
‖∇u‖2σ(ρ+2)

α ‖∇v‖2α + ‖∇v‖2σ(ρ+2)+2
α

)
.

Since max(β1, β2) < α then we have

Hσ(β1−1) (t) ‖∇u‖β1

β1
≤ c6(‖∇u‖2σ(β1−1)(ρ+2)

α ‖∇u‖β1

α

+ ‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α )

= c6(‖∇u‖2σ(β1−1)(ρ+2)+β1

α

+ ‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α ), (3.23)

and

Hσ(β2−1) (t) ‖∇v‖β2

β2
≤ c7(‖∇u‖2σ(β2−1)(ρ+2)

α ‖∇v‖β2

α

+ ‖∇v‖2σ(β2−1)(ρ+2)
α ‖∇v‖β2

α )

= c7(‖∇u‖2σ(β2−1)(ρ+2)
α ‖∇v‖β2

α

+ ‖∇v‖2σ(β2−1)(ρ+2)+β2

α ), (3.24)

for some positive constants c2, c3, c4, c5, c6 and c7. By using (3.11) and the algebraic
inequality

zν ≤ (z + 1) ≤
(
1 + 1

a

)
(z + a) , ∀z ≥ 0, 0 < ν ≤ 1, a ≥ 0. (3.25)

We have, for all t ≥ 0,

‖∇u‖2σ(m−1)(ρ+2)+m
α ≤ d (‖∇u‖αα +H (0)) ≤ d (‖∇u‖αα +H (t))

‖∇v‖2σ(r−1)(ρ+2)+r
α ≤ d (‖∇v‖αα +H (t))

‖∇u‖2σ(ρ+2)+2
α ≤ d (‖∇u‖αα +H (t))

‖∇v‖2σ(ρ+2)+2
α ≤ d (‖∇v‖αα +H (t))

‖∇u‖2σ(β1−1)(ρ+2)+β1

α ≤ d (‖∇u‖αα +H (t))

‖∇v‖2σ(β2−1)(ρ+2)+β2

α ≤ d (‖∇v‖αα +H (t)) ,

(3.26)

where d = 1 + 1/H (0).
Also keeping in mind the fact that max(m, r) < α, using Yong’s inequality, the
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inequality (3.25) togrther withe (3.11), we conclude

‖∇v‖2σ(m−1)(ρ+2)
α ‖∇u‖mα ≤ C (‖∇v‖αα + ‖∇u‖αα)

‖∇u‖2σ(r−1)(ρ+2)
α ‖∇v‖rα ≤ C (‖∇u‖αα + ‖∇v‖αα)

‖∇v‖2σ(ρ+2)
α ‖∇u‖2α ≤ C (‖∇v‖αα + ‖∇u‖αα)

‖∇u‖2σ(ρ+2)
α ‖∇v‖2α ≤ C (‖∇u‖αα + ‖∇v‖αα)

‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α ≤ C (‖∇v‖αα + ‖∇u‖αα)

‖∇u‖2σ(β2−1)(ρ+2)
α ‖∇v‖β2

α ≤ C (‖∇u‖αα + ‖∇v‖αα) ,

(3.27)

where C is a generic positive constant. Taking into account (3.19)- (3.27), then (3.18)
takes the form

L
′
(t) ≥ ((1− σ)− εM)H−σ (t)H

′
(t)

+ε

(
1 +

k

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε(

[
k/α− 1− kE1ζ

−a
2

]
− CM−(m−1)

1 − CM−(r−1)
2

−C
4
M−1

3 − C

4
M−1

4 − CM−(β1−1)
5

−CM−(β2−1)
6 − 1) (‖∇u‖αα + ‖∇v‖αα)

+ε

(
k − CM−(m−1)

1 − CM−(r−1)
2 − C

4
M−1

3 − C

4
M−1

4

−CM−(β1−1)
5 − CM−(β2−1)

6

)
H (t)

+ε

(
c0

2 (ρ+ 2)
− kc1

2 (ρ+ 2)

)(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
, (3.28)

for some constant k. Using k = c0/c1, we arrive at

L
′
(t) ≥ ((1− σ)− εM)H−σ (t)H

′
(t)

+ε

(
1 +

c0
2c1

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε

(
c− CM−(m−1)

1 − CM−(r−1)
2 − C

4
M−1

3 − C

4
M−1

4

−CM−(β1−1)
5 − CM−(β2−1)

6 − 1
)

(‖∇u‖αα + ‖∇v‖αα)

+ε

(
c0/c1 − CM−(m−1)

1 − CM−(r−1)
2 − C

4
M−1

3 − C

4
M−1

4

−CM−(β1−1)
5 − CM−(β2−1)

6

)
H (t) , (3.29)
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where c = k/α− 1− kE1ζ
−2
2 = c0/ (c1α)− 1− (c0/c1)E1ζ

−2
2 > 0 since ζ2 > ζ1.

At this point, and for large values of M1, M2, M3, M4, M5 and M6, we can find
positive constants Λ1 and Λ2 such that (3.29) becomes

L
′
(t) ≥ ((1− σ)−Mε)H−σ (t)H

′
(t)

+ε

(
1 +

c0
2c1

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+εΛ1 (‖∇u‖αα + ‖∇v‖αα) + εΛ2H (t) . (3.30)

Once M1, M2, M3, M4, M5 and M6 are fixed (hence, Λ1 and Λ2), we pick ε small
enough so that ((1− σ)−Mε) ≥ 0 and

L (0) = H1−σ (0) +

∫
Ω

[u0.ut + v0.vt] dx > 0.

From these and (3.30) becomes

L
′
(t) ≥ εΓ(H (t) + ‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

+ ‖∇u‖αα + ‖∇v‖αα). (3.31)

Thus, we have L (t) ≥ L (0) > 0, for all t ≥ 0. Next, by Holder’s and Young’s
inequalities, we estimate(∫

Ω

u.ut (x, t) dx+

∫
Ω

v.vt (x, t) dx

) 1
1−σ

≤ C

(
‖u‖

τ
1−σ
2(ρ+2) + ‖ut‖

s
1−σ
2 + ‖v‖

τ
1−σ
2(ρ+2) + ‖vt‖

s
1−σ
2

)
≤ C

(
‖∇u‖

τ
1−σ
α + ‖ut‖

s
1−σ
2 + ‖∇v‖

τ
1−σ
α + ‖vt‖

s
1−σ
2

)
, (3.32)

for
1

τ
+

1

s
= 1. We take s = 2 (1− σ) , to get

τ

1− σ
=

2

1− 2σ
.

By using (3.11) and (3.25) we get

‖∇u‖

2

(1− 2σ)
α ≤ d (‖∇u‖αα +H (t)) ,

and

‖∇v‖

2

(1− 2σ)
α ≤ d (‖∇v‖αα +H (t)) , ∀t ≥ 0.

Therefore, (3.32) becomes(∫
Ω

u.ut (x, t) dx+

∫
Ω

v.vt (x, t) dx

) 1
1−σ

≤ C(‖∇u‖αα + ‖∇v‖αα + ‖ut‖22 + ‖vt‖22
+m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2 +H (t)),∀t ≥ 0. (3.33)
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Also, since

L
1

1−σ (t) =

(
H1−σ (t) + ε

∫
Ω

(u.ut + v.vt) (x, t) dx

) 1
(1−σ)

≤ C

H (t) +

∣∣∣∣∫
Ω

(u.ut (x, t) + v.vt (x, t)) dx

∣∣∣∣
1

(1−σ)


≤ C[H (t) + ‖∇u‖αα + ‖∇v‖αα + ‖ut‖22 + ‖vt‖22

+m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2], ∀t ≥ 0. (3.34)

Combining withe (3.34) and (3.31), we arrive at

L
′
(t) ≥ a0L

1
1−σ (t) , ∀t ≥ 0. (3.35)

Finally, a simple integration of (3.35) gives the desired result.This completes the proof
of Theorem (3.1) �
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Global existence and stability of solution
for a p−Kirchhoff type hyperbolic equation
with damping and source terms

Amar Ouaoua, Aya Khaldi and Messaoud Maouni

Abstract. In this paper, we consider a nonlinear p−Kirchhoff type hyperbolic
equation with damping and source terms

utt −M

∫
Ω

|∇u|p dx

∆pu + |ut|m−2 ut = |u|r−2 u.

Under suitable assumptions and positive initial energy, we prove the global exis-
tence of solution by using the potential energy and Nehari’s functionals. Finally,
the stability of equation is established based on Komornik’s integral inequality.

Mathematics Subject Classification (2010): 35L70, 35L05, 35B40, 93D20.

Keywords: p−Kirchhoff type hyperbolic equation, global existence, source term,
Komornik’s integral inequality.

1. Introduction

In this article, we consider the following value problem
utt −M

(∫
Ω

|∇u|p dx
)

∆pu+ |ut|m−2
ut = |u|r−2

u, (x, t) ∈ Ω× (0, T ) ,

u (x, t) = 0, (x, t) ∈ ∂Ω× (0, ) ,
u (x, 0) = u0 (x) , ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn, n ≥ 1 with smooth boundary ∂Ω and

M(s) = a+ bs

with positive parameters a, b, ∆pu = div(|∇u|p−2∇u), p ≥ 2.

Received 30 December 2019; Accepted 03 February 2020.



818 Amar Ouaoua, Aya Khaldi and Messaoud Maouni

In the past few years, much effort has been devoted to nonlocal problems because
of their wide applications in both physics and biology. For exemple the following
hyperbolic equation with a nonlocal coefficient are as follows:

εuεtt + uεt −M

∫
Ω

|∇uε|p dx

∆pu
ε = f (x, t, uε) , (1.2)

where M (s) = a+bs, a, b > 0 and p > 1, in a bounded domain Ω ⊂ Rn is a potential
model for damped small transversal vibrations of an elastic string with uniform density
ε (see [6]). For p = 2, such nonlocal equations were first proposed by Kirchhoff [7] in
1883 and therefore were usually referred to as Kirchhoff equations.

Equation (1.1) can be viewed as a generalization of a model introduced by Kirch-
hoff [15]. The following Kirchhoff type equation

utt −M
(
‖∇u‖22

)
∆u+ g (ut) = f (u) , (1.3)

have been discussed by many authors. For g (ut) = ut, the global existence and blow

up results can by found in ([13], [15]), for g (ut) = |ut|m−2
ut, p > 2, the main results of

existence and blow up are in ([5], [11]). The absence of the damping term |ut|m−2
ut

in equation (1.1), when M(s) = a + bsγ (γ > 0) and p = 2, the existence of the
global solution was investigated by many authors (see [1]-[4], [9], [10], [15], [16]). The

works of K. Ono [12]-[14] deal with equation (1.3) in two cases with f(u) = |u|r−2
u,

p > 2. In the first case, for g(ut) = −ut or ut, he considered M(s) = a + bsγ , where
a ≥ 0, b ≥ 0, a + b > 0, γ > 0. He showed that the local solutions blow up at finite
time with E(0) > 0 by applying the concavity method. Moreover, he combined the
so-called potential well method and concavity method to show blow-up properties
with E(0) > 0. While in the second case, for g(ut) = |ut|m−2

ut, m > 2, he treated
M(s) = a + bsγ , where b > 0, a = 0 and γ ≥ 1. He proved that the local solution is
not global when p > max(2γ + 2,m) and E(0) < 0.

The paper is organized as follows. In section 2, we introduce some notations and
Lemma needed in the next sections to prove the main result. In section 3, we use
the energy and Nihari functionals to prove the global existence of the solutions. In
section 4, we use the energy method to prove the result based on Komornik’s integral
inequality.

2. Preliminaries

We begin this section with some notations and definitions. Denote by ‖.‖p , the

Lp (Ω) norm of a Lebesgue function u ∈ Lp (Ω) for p ≥ 1. We use W 1,p
0 (Ω) to denote

the well-known Sobolev space such that both u and |∇u| are in W 1,p
0 (Ω) equipped

with the norm ‖u‖W 1,p
0 (Ω) = ‖∇u‖p .

Lemma 2.1. Let s be a number with 2 ≤ s ≤ +∞ if n ≤ p and 2 ≤ s ≤ pn
n−p if n > p.

Then there is a constant c∗ depending on Ω and s such that

‖u‖s ≤ c∗ ‖∇u‖p , ∀u ∈W
1,p
0 (Ω) .
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Theorem 2.2. Suppose that (u0, u1) ∈W 1,p
0 (Ω)× L2 (Ω) and

2p < r ≤ p∗,

where

p∗ =

{ np
n−p , if n > p,

+∞ if n ≤ p.

Then problem (1.1) has a unique weak solution such that

u ∈ L∞
(

(0, T ) , W 1,p
0 (Ω)

)
,

ut ∈ L∞
(
(0, T ) , L2 (Ω)

)
∩ Lm (Ω× (0, T )) ,

utt ∈ L2
(

(0, T ) , W−1,p
′

(Ω)
)
.

3. Global existence

In this section, we state and prove our result, we define the potential energy
functional and the Nehari’s functional, by the following

E (t) = E (u (t)) =
1

2
‖ut (t)‖22 +

a

p
‖∇u (t)‖pp +

b

2p
‖∇u (t)‖2pp −

1

r
‖u (t)‖rr . (3.1)

J (t) = J (u (t)) =
a

p
‖∇u (t)‖pp +

b

2p
‖∇u (t)‖2pp −

1

r
‖u (t)‖rr . (3.2)

I (t) = I (u (t)) = a ‖∇u (t)‖pp + b ‖∇u (t)‖2pp − ‖u (t)‖rr . (3.3)

We can considering a = b = 1, and this does not change the general result of (1.1).

Lemma 3.1. Under the assumptions of theorem 2.2, we have

E
′
(t) = −‖ut (t)‖mm ≤ 0, t ∈ [0, T ] . (3.4)

and

E (t) ≤ E (0) .

Proof. We multiply the first equation of (1.1) by ut and integrating over the domain
Ω, we get

d

dt

1

2
‖ut‖22 +

1

p

∫
Ω

|∇u (t)|p dx+
1

2p

∫
Ω

|∇u (t)|p dx

2

− 1

r
‖u (t)‖rr

= −‖ut (t)‖mm ,

then

E
′
(t) = −‖ut (t)‖mm ≤ 0.

Integrating (3.4) over (0, t) , we obtain E (t) ≤ E (0) . �
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Lemma 3.2. Assume that the assumptions of theorem 2.2 hold,

I (0) > 0,

and

β1 + β2 < 1, (3.5)

where

β1 := αcr∗

(
pr

r − p
E (0)

) r−p
p

, β2 := (1− α) cr∗

(
2pr

r − 2p
E (0)

) r−2p
2p

with 0 < α < 1, c∗ is the best embedding constant of W 1, p
0 (Ω) ↪→ Lr (Ω) , then

I (t) > 0, for all t ∈ [0, T ] .

Proof. By continuity, there exists T∗, such that

I (t) ≥ 0, for all t ∈ [0, T∗] . (3.6)

Now, we have for all t ∈ [0, T∗]:

J (t) = J (u (t)) =
1

p
‖∇u (t)‖pp +

1

2p
‖∇u (t)‖2pp −

1

r
‖u (t)‖rr

≥ 1

p
‖∇u (t)‖pp +

1

2p
‖∇u (t)‖2pp −

1

r

(
‖∇u (t)‖pp + ‖∇u (t)‖2pp − I (t)

)
≥ r − p

pr
‖∇u (t)‖pp +

r − 2p

2pr
‖∇u (t)‖2pp +

1

r
I (t)

using (3.6), we obtain

r − p
pr
‖∇u (t)‖pp +

r − 2p

2pr
‖∇u (t)‖2pp ≤ J (t) , for all t ∈ [0, T∗] . (3.7)

By the definition of E, we get

‖∇u (t)‖pp ≤
pr

r − p
E (t) ≤ pr

r − p
E (0) (3.8)

and

‖∇u (t)‖2pp ≤
2pr

r − 2p
E (t) ≤ 2pr

r − 2p
E (0) (3.9)

On the other hand, we have

‖u (t)‖rr = α ‖u (t)‖rr + (1− α) ‖u (t)‖rr
By the embedding of W 1, p

0 (Ω) ↪→ Lr (Ω) , we obtain

‖u (t)‖rr ≤ α cr∗ ‖∇u (t)‖rp + (1− α) cr∗ ‖∇u (t)‖rp
≤ α cr∗ ‖∇u (t)‖r−pp × ‖∇u (t)‖pp + (1− α) cr∗ ‖∇u (t)‖r−2p

p × ‖∇u (t)‖2pp
By (3.8) and (3.9), we get

‖u (t)‖rr ≤ β1 ‖∇u (t)‖pp + β2 ‖∇u (t)‖2pp , for all t ∈ [0, T∗] . (3.10)

Since β1 + β2 < 1, then

‖u (t)‖rr < ‖∇u (t)‖pp + ‖∇u (t)‖2pp , for all t ∈ [0, T∗] .
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This implies that
I (t) > 0, for all t ∈ [0, T∗] .

By repeating the above procedure, we can extend T∗ to T. �

Theorem 3.3. Under the assumptions of lemma 3.2, the local solution of (1.1) is
global.

Proof. We have

E (u (t)) =
1

2
‖ut (t)‖22 +

1

p
‖∇u (t)‖pp +

1

2p
‖∇u (t)‖2pp −

1

r
‖u (t)‖rr

≥ 1

2
‖ut (t)‖22 +

r − p
pr
‖∇u (t)‖pp +

r − 2p

2pr
‖∇u (t)‖2pp .

So that
‖ut (t)‖22 + ‖∇u (t)‖pp ≤ C E (t) . (3.11)

By Lemma 3.1, we obtain

‖ut (t)‖22 + ‖∇u (t)‖pp ≤ C E (0) . (3.12)

This implies that the local solution is global in time. �

4. Stability of solution

In this section our main result is established based in Komornik’s integral in-
equality [8]. For this, we need the following Lemma:

Lemma 4.1. Suppose that the assumptions of Lemma 3.2 and m > p, hold, then there
exists a positive constant c such that∫

Ω

|u (t)|m dx ≤ cE (t) . (4.1)

Proof. By using (3.8), we obtain∫
Ω

|u (t)|m dx = ‖u (t)‖mm ≤ c
m
∗ ‖∇u (t)‖mp

≤ cm∗ ‖∇u (t)‖m−pp × ‖∇u (t)‖pp
≤ cm∗ ‖∇u (t)‖m−pp × rp

r − p
E (t) ≤ cE (t) .

�

Now, we state our main result:

Theorem 4.2. Let the assumptions of Lemma 3.2, then, there exists constants C, ζ > 0,
such that

E (t) ≤ C

(1 + t)
2

m−2

, for all t ≥ 0 if m > 2.

E (t) ≤ Ce−ζt, for all t ≥ 0 if m = 2.
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Proof. Multiplying first equation of (1.1) by u (t)Eq (t) (q > 0) , and integrating over
Ω× (S, T ) , we obtain

T∫
S

∫
Ω

Eq (t)

u (t)utt (t)− u (t)

M
∫

Ω

|∇u|p dx

∆pu+ |ut|m−2
ut

 dxdt
=

T∫
S

Eq (t)

∫
Ω

|u (t)|r dxdt

So that

T∫
S

∫
Ω

Eq (t)
[
(u (t)ut (t))t − |ut (t)|2 + |∇u (t)|p + ‖∇u (t)‖pp |∇u (t)|p

+u (t) |ut|m−2
ut

]
dxdt =

T∫
S

Eq (t)

∫
Ω

|u (t)|r dxdt

We add and subtract the term

T∫
S

Eq (t)

∫
Ω

[
β1 |∇u (t)|p + β2 ‖∇u (t)‖pp |∇u (t)|p + (2 + β1 + β2) |ut (t)|2

]
dxdt,

and use (3.10), to get

(1− β1)

T∫
S

Eq (t)

∫
Ω

[
|∇u (t)|p + |ut (t)|2

]
dxdt

+ (1− β2)

T∫
S

Eq (t)

∫
Ω

[
‖∇u (t)‖pp |∇u (t)|p + |ut (t)|2

]
dxdt

+

T∫
S

Eq (t)

∫
Ω

[
(u (t)ut (t))t − (3− β1 − β2) |ut (t)|2

]
dxdt

+

T∫
S

Eq (t)

∫
Ω

u (t)ut (t) |ut (t)|m−2
dxdt

= −
T∫
S

Eq (t)

∫
Ω

[
β1 |∇u (t)|p + β2 ‖∇u (t)‖pp |∇u (t)|p − |u (t)|r

]
dxdt ≤ 0. (4.2)
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It is clear that

γ

T∫
S

Eq (t)

∫
Ω

[
1

p
|∇u (t)|p +

1

2p
‖∇u (t)‖pp |∇u (t)|p +

|ut (t)|2

2
− |u (t)|r

r

]
dxdt

≤ (1− β1)

T∫
S

Eq (t)

∫
Ω

[
1

p
|∇u (t)|p +

|ut (t)|2

2

]
dxdt

+ (1− β2)

T∫
S

Eq (t)

∫
Ω

[
1

2p
‖∇u (t)‖pp |∇u (t)|p +

|ut (t)|2

2

]
dxdt (4.3)

where γ = Min ((1− β1) , (1− β2)) . By (4.2) , (4.3) and definition of E (t) , we get

γ

T∫
S

Eq+1 (t) dt ≤ −
T∫
S

Eq (t)

∫
Ω

(u (t)ut (t))t dxdt

+ (3− β1 − β2)

T∫
S

Eq (t)

∫
Ω

|ut (t)|2 dxdt

−
T∫
S

Eq (t)

∫
Ω

u (t)ut (t) |ut (t)|m−2
dxdt. (4.4)

Using the definition of E (t) and the following expression

d

dt

Eq (t)

∫
Ω

u (t)ut (t) dx

 = qEq−1 (t)
d

dt
E (t)

∫
Ω

u (t)ut (t) dx

+Eq (t)

∫
Ω

(u (t)ut (t))t dx.

Inequality (4.4), becomes

γ

T∫
S

Eq+1 (t) dt ≤ q
T∫
S

Eq−1 (t)
d

dt
E (t)

∫
Ω

u (t)ut (t) dx

−
T∫
S

d

dt

Eq (t)

∫
Ω

u (t)ut (t) dx

 dt−
T∫
S

Eq (t)

∫
Ω

u (t)ut (t) |ut (t)|m−2
dxdt

+ (3− β1 − β2)

T∫
S

Eq (t)

∫
Ω

|ut (t)|2 dxdt. (4.5)

In the sequel, we denote by c the various constants.
We estimate the terms in the right-hand side of (4.5) as follow:
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By (3.4) and Young’s inequality, we obtain

q

T∫
S

Eq−1 (t)
d

dt
E (t)

∫
Ω

u (t)ut (t) dx

≤ q

T∫
S

Eq−1 (t)
(
−E

′
(t)
)∫

Ω

[
1

p
|u (t)|p +

p− 1

p
|ut (t)|

p
p−1

]
dxdt (4.6)

Since, 1 ≤ p
p−1 < 2, by the embedding of L2 (Ω) ↪→ L

p
p−1 (Ω) , we have

q

T∫
S

Eq−1 (t)
d

dt
E (t)

∫
Ω

u (t)ut (t) dx

≤ q

T∫
S

Eq−1 (t)
(
−E

′
(t)
)∫

Ω

[
1

p
|u (t)|p + c

p− 1

p
|ut (t)|2

]
dxdt

Thus, by (3.11), we find

q

T∫
S

Eq−1 (t)
d

dt
E (t)

∫
Ω

u (t)ut (t) dx

≤ c

T∫
S

Eq (t)
(
−E

′
(t)
)
dt

≤ cEq+1 (S)− cEq+1 (T )

≤ cEq (0)E (S) ≤ cE (S) . (4.7)

For the second term, we have

−
T∫
S

d

dt

Eq (t)

∫
Ω

u (t)ut (t) dx

 dxdt

≤

∣∣∣∣∣∣Eq (t)

∫
Ω

u (S)ut (S) dx− Eq (t)

∫
Ω

u (T )ut (T ) dx

∣∣∣∣∣∣
≤ Eq (t)

∣∣∣∣∣∣
∫
Ω

u (x, S)ut (x, S) dx

∣∣∣∣∣∣+ Eq (t)

∣∣∣∣∣∣
∫
Ω

u (x, T )ut (x, T ) dx

∣∣∣∣∣∣
≤ cEq+1 (S) + cEq+1 (T )

≤ cEq (0)E (S) ≤ cE (S) . (4.8)
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For the third term, we use the following Young inequality:

XY ≤ ε

λ1
Xλ1 +

1

λ2ε
λ2
λ1

Y λ2 , X, Y ≥ 0, ε > 0 and
1

λ1
+

1

λ2
= 1,

with λ1 = m, λ2 = m
m−1 .

By (3.4) and Lemma 4.1, we have

−
T∫
S

Eq (t)

∫
Ω

u (t)ut (t) |ut (t)|m−2
dxdt

≤
T∫
S

Eq (t)

εc∫
Ω

|u (t)|m dx+ cε

∫
Ω

|ut (t)|m dx

 dt

≤ εc

T∫
S

Eq (t)

∫
Ω

|u (t)|m dxdt+ cε

T∫
S

Eq (t)
(
−E

′
(t)
)
dt

≤ εc

T∫
S

Eq+1 (t) dt+ cεE (S) . (4.9)

For the last term of (4.5), we have

(3− β1 − β2)

T∫
S

Eq (t)

∫
Ω

|ut (t)|2 dxdt

≤ c

T∫
S

Eq (t)

∫
Ω

|ut (t)|m dx

 2
m

dt

≤ c

T∫
S

Eq (t)
(
−E

′
(t)
) 2
m

dt. (4.10)

By Young’s inequality with λ1 = (q + 1) /q and λ2 = q + 1, we have

T∫
S

Eq (t)
(
−E

′
(t)
) 2
m

dt ≤ εc
T∫
S

Eq+1 (t) dt+ cε

T∫
S

(
−E

′
(t)
) 2(q+1)

m

dt.

We take q = m
2 − 1, to find

T∫
S

Eq (t)
(
−E

′
(t)
) 2
m

dt ≤ εc
T∫
S

Eq+1 (t) dt+ cε

T∫
S

(
−E

′
(t)
)
dt.
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This implies

T∫
S

Eq (t)
(
−E

′
(t)
) 2
m

dt ≤ εc
T∫
S

Eq+1 (t) dt+ cεE (S) . (4.11)

Substituting (4.11) into (4.10), we obtain

(3− β1 − β2)

T∫
S

Eq (t)

∫
Ω

|ut (t)|2 dxdt ≤ εc
T∫
S

Eq+1 (t) dt+ cεE (S) . (4.12)

By insert (4.7), (4.8), (4.9) and (4.12) in (4.5), we arrive at

γ

T∫
S

E
m
2 (t) dt ≤ εc

T∫
S

E
m
2 (t) dt+ cεE (S) .

Choosing ε small enough for that

T∫
S

E
m
2 (t) dt ≤ cE (S) .

By taking T goes to ∞, we get
∞∫
S

E
m
2 (t) dt ≤ cE (S) .

By Komornik’s integral inequality yields the result. �

Acknowledgement. The authors wish to thank deeply the anonymous referee for useful
remarks and careful reading of the proofs presented in this paper.

References

[1] Autuori, G., Pucci, P., Kirchhoff systems with dynamic boundary conditions, Nonlinear
Anal. Theory, Methods Appl., 73(2010), no. 7, 1952-1965.

[2] Autuori, G., Pucci, P., Salvatori, MC., Global nonexistence for nonlinear Kirchhoff sys-
tems, Arch. Ration. Mech. Anal., 196(2010), no. 2, 489-516.

[3] Benaissa, A., Messaoudi, S.A., Blow-up of solutions for Kirchhoff equation of q-Laplacian
type with nonlinear dissipation, Colloq. Math., 94(2002), no. 1, 103-109.

[4] Gao, Q., Wang, Y., Blow-up of the solution for higher-order Kirchhoff-type equations
with nonlinear dissipation, Cent. Eur. J. Math., 9(2011), no. 3, 686-698.

[5] Georgiev, V., Todorova, G., Existence of a solution of the wave equation with nonlinear
damping and source term, J. Dfferential Equations., 109(1994), no. 2, 295-308.

[6] Ghisi, M., Gobbino, M., Hyperbolic-parabolic singular perturbation for middly degenerate
Kirchhoff equations: time-decay estimates, J. Differential Equations, 245(2008), no. 10,
2979-3007.

[7] Kirchhoff, G., Mechanik, Teubner, 1883.



Global existence and stability of p−Kirchhoff hyperbolic equation 827

[8] Komornik, V., Exact Controllability and Stabilization the Multiplier Method, Paris: Mas-
son – John Wiley, 1994.

[9] Li, F., Global existence and blow-up of solutions for a higher-order Kirchhoff-type equa-
tion with nonlinear dissipation, Appl. Math. Lett., 17(2004), no. 12, 1409-1414.

[10] Messaoudi, S.A., Said Houari, B., A blow-up result for a higher-order nonlinear
Kirchhoff-type hyperbolic equation, Appl. Math. Lett., 20(2007), no. 8, 866-871.

[11] Messaoudi, S.A., Talahmeh, A., Blowup in solutions of a quasilinear wave equation with
variable-exponent nonlinearities, Math. Methods Appl. Sci., 40(2017), no. 18, 6976-6986.

[12] Ono, K., Blowing up and global existence of solutions for some degenerate nonlinear wave
equations with some dissipation, Nonlinear Anal. Theory, Methods Appl., 30(1997), no.
2, 4449-4457.

[13] Ono, K., Global existence, decay, and blow-up of solutions for some mildly degenerate
nonlinear Kirchhoff strings, J. Differential Equations., 137(1997), no. 2, 273-301.

[14] Ono, K., On global existence, asymptotic stability and blowing up of solutions for some
degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math.
Methods Appl. Sci., 20(1997), no. 2, 151-177.

[15] Wu, S.T., Tsai, L.Y., Blow-up of solutions for some nonlinear wave equations of Kirch-
hoff type with some dissipation, Nonlinear Anal. Theory Methods Appl., 65(2006), no.
2, 243-264.

[16] Zeng, R., Mu, C.L., Zhou, S.M., A blow-up result for Kirchhoff-type equations with high
energy, Math. Methods Appl. Sci., 34(2011), no. 4, 479-486.

Amar Ouaoua
Laboratory of Applied Mathematics and History and Didactics of Mathematics,
Faculty of Sciences,
University of 20 August 1955, Skikda, Algeria
e-mail: a.ouaoua@univ-skikda.dz & ouaouaama21@gmail.com

Aya Khaldi
Laboratory of Applied Mathematics and History and Didactics of Mathematics,
Faculty of Sciences,
University of 20 August 1955, Skikda, Algeria
e-mail: ayakhaldi21@gmail.com

Messaoud Maouni
Laboratory of Applied Mathematics and History and Didactics of Mathematics,
Faculty of Sciences,
University of 20 August 1955, Skikda, Algeria
e-mail: m.maouni@univ-skikda.dz & maouni21@gmail.com
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1. Introduction

Let f be a 2π-periodic function, f ∈ L[0, 2π], and

a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx), (1.1)

its Fourier series at the point x, where

ak =
1

π

∫ π

−π
f(x) cos kxdx, (k = 0, 1, . . . ); bk =

1

π

∫ π

−π
f(x) sin kxdx, (k = 1, 2, . . . ).

By

‖f‖ = sup
0≤x≤2π

|f(x)|

we denote the sup-norm of f over [0, 2π], and by C[0, 2π] the class of all 2π-periodic
continuous functions defined in [0, 2π].

In 1928, was G. Alexits [4] who studied the degree of approximation of function
a f ∈ Lipα by Cesàro means (C, δ) of its Fourier series. This study may be considered
as a starting point for other studies of this nature, and another type of similar studies

Received 02 January 2020; Accepted 25 May 2020.
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can be found in [6]-[9]. Recent studies of other researchers can be found in [1], [5],
and [7].

For our purpose, we are going to recall a result proved in [6]. To do this we need
first to present the generalized Vallée Poussin mean given in [10].

Let
∑∞
n=1 wn be a given infinite series and let sn be its n-th partial sum. Let

λ := (λn) be a monotone non-decreasing sequence of integers such that λ1 = 1 and
λn+1 − λn ≤ 1.

The mean

Vn(λ) =
1

λn

n−1∑
m=n−λn

sm, (n ≥ 1), (1.2)

is called the n-th generalized de la Vallée Poussin mean of the sequence (sn) generated
by sequence (λn).

For n-th partial sum

sn(f ;x) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

of the series (1.1), its n-th generalized de la Vallée Poussin mean is defined by

Vn(λ; f ;x) =
1

λn

n−1∑
m=n−λn

sm(f ;x), (n ≥ 1), (1.3)

and the modulus of continuity of f(x), for a given real number δ > 0, is defined as
follows

ω(f ; δ) := sup
|x−y|≤δ

|f(x)− f(y)|,

where x, y ∈ [0, 2π].
Throughout this paper we write u = O(v) if there exists a positive constant K,

such that u ≤ Kv. Now, we are ready to recall the result mentioned above.

Theorem 1.1 ([6]). Let f ∈ C[0, 2π] and ω(f ; t) be its modulus of continuity satisfying
the following conditions as t→ +0:∫ π

2

t

u−2ω(f ;u)du = O(F (t)), (1.4)

where F (t) ≥ 0, and ∫ t

0

F (u)du = O(tF (t)). (1.5)

Then

‖f − Vn(λ; f)‖ = O
(

1

λn
F

(
π

2λn

))
. (1.6)

For our further investigation let a := (an) and b := (bn) be sequences of non-
negative integers with condition

1 ≤ bn − an + λn, (n = 1, 2, . . . ). (1.7)

Whence, we are in able to generalize the mean Vn(λ) defined in (1.2) as follows.
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The mean

Vn(λ, a, b) =
1

bn − an + λn

bn−1∑
m=an−λn

sm, (n ≥ 1), (1.8)

is called the n-th deferred generalized de la Vallée Poussin mean of the sequence (sn)
generated by sequences λ, a, and b.

It is the purpose of this paper to estimate the deviation f − Vn(λ, a, b) in the
sup-norm, which in fact generalize Theorem 1.1 (as well as we extend it in the two-
dimensional setting, see subsec. 3.2). To do this we need some helpful lemmas given
in next section.

2. Auxiliary lemma

Next lemma has been proved implicitly in [6].

Lemma 2.1. Let (1.4) hold. Then, ω(f ; t) = O(tF (t)).

Now, we prove next helpful lemma.

Lemma 2.2. Denote by

Ka,bn (t) :=

bn−1∑
m=an−λn

Dm(t) =

bn−1∑
m=an−λn

sin (2m+ 1) t

sin t

the deferred de la Vallée Poussin kernel, where Dm(t) := sin(2m+1)t
sin t .

Then,

(i) Ka,bn (t) =
sin(bn − an + λn)t sin(bn + an − λn)t

sin2 t
,

(ii) |Ka,bn (t)| = O
(
bn − an + λn

t

)
, 0 < t ≤ π

2(bn − an + λn)
,

(iii) |Ka,bn (t)| = O
(

1

t2

)
,

π

2(bn − an + λn)
< t ≤ π

2
.

Proof. (i) We have

Ka,bn (t) =

bn−1∑
m=an−λn

sin (2m+ 1) t

sin t

=

bn−1∑
m=0

2 sin (2m+ 1) t sin t

2 sin2 t
−
an−λn−1∑
m=0

2 sin (2m+ 1) t sin t

2 sin2 t

=
1− cos(2bnt)

2 sin2 t
− 1− cos(an − λn)t

2 sin2 t

=
sin2(bnt)− sin2(an − λn)t

sin2 t

=
sin(bn − an + λn)t sin(bn + an − λn)t

sin2 t
.



832 Xhevat Z. Krasniqi

(ii) Using the inequalities | sinβ| ≤ 1, | sinβ| ≤ β, and sinβ ≥ 2
πβ for 0 < β ≤ π

2 ,
we have:

|Ka,bn (t)| ≤ π2(bn − an + λn)t

4t2
= O

(
bn − an + λn

t

)
.

(iii) Similarly, using the inequalities | sinβ| ≤ 1 and sinβ ≥ 2
πβ for 0 < β ≤ π

2 ,
we also have:

|Ka,bn (t)| ≤ π2

4t2
= O

(
1

t2

)
.

The proof is completed. �

In the sequel we pass to the main result.

3. Main result

3.1. Approximation by deferred generalized de la Vallée Poussin mean of single
Fourier series

Here, we prove the following.

Theorem 3.1. Let f ∈ C[0, 2π] and ω(f ; t) be its modulus of continuity satisfying
conditions (1.4) and (1.5) as t→ +0, where F (t) ≥ 0.

Then

‖f − Vn(λ, a, b; f)‖ = O
(

1

bn − an + λn
F

(
π

2(bn − an + λn)

))
. (3.1)

Proof. After some calculation we have:

sm(f ;x) =
1

π

∫ π
2

0

[f(x+ 2t) + f(x− 2t)]Dm(t)dt,

where Dm(t) = sin(2m+1)t
sin t .

Denoting by Vn(λ, a, b; f ;x) the deferred generalized de la Vallée Poussin mean of
sm(f ;x), i.e.,

Vn(λ, a, b; f ;x) :=
1

bn − an + λn

bn−1∑
m=an−λn

sm(f ;x),

we get:

Vn(λ, a, b; f ;x)− f(x) =
1

(bn − an + λn)π

∫ π
2

0

ψx(t)Ka,bn (t)dt,

where

ψx(t) := f(x+ 2t) + f(x− 2t)− f(x).
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Whence,

‖Vn(λ, a, b; f)− f‖ ≤ 1

(bn − an + λn)π

∫ π
2

0

|ψx(t)||Ka,bn (t)|dt

≤ 4

(bn − an + λn)π

(∫ π
2(bn−an+λn)

0

+

∫ π
2

π
2(bn−an+λn)

)
ω(f ; t)|Ka,bn (t)|dt

:= P1 + P2. (3.2)

Using Lemma 2.2, part (ii), we obtain:

|P1| = O (1)

∫ π
2(bn−an+λn)

0

t−1ω(f ; t)dt,

and applying Lemma 2.1, (1.4) and (1.5), we get:

|P1| = O (1)

∫ π
2(bn−an+λn)

0

∫ π
2

t

u−2ω(f ;u)dudt

= O (1)

∫ π
2(bn−an+λn)

0

F (t)dt

= O
(

1

bn − an + λn
F

(
π

2(bn − an + λn)

))
. (3.3)

To estimate P2, we use Lemma 2.2, part (iii). Namely, based on (1.4), we have

|P2| = O
(

1

(bn − an + λn)π

)∫ π
2

π
2(bn−an+λn)

t−2ω(f ; t)dt

= O
(

1

bn − an + λn
F

(
π

2(bn − an + λn)

))
. (3.4)

Finally, inserting (3.2) and (3.3) into (3.4), we immediately obtain (3.1) as required.

The proof is completed. �

Remark 3.2. Since, in general, λn ≤ bn− an +λn, then we observe that the degree of
approximation obtained in Theorem 3.1 is not worse than that appears in Theorem
1.1.

Remark 3.3. For bn = an = n, we immediately obtain the result given in [6].

Further, let the sequences a := (an) and b := (bn) be of non-negative integers
with conditions

an < bn, n = 1, 2, . . . , (3.5)

and

lim
n→∞

bn = +∞. (3.6)

If λn = 1 for all n ≥ 1, then the deferred de la Vallée Poussin mean

Vn(1, a+ 2, b+ 1; f ;x)
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reduces to

Db
a(f ;x) :=

1

bn − an

bn∑
m=an+1

sm(f ;x),

which is the deferred Cesàro mean of the sum sn(f ;x) introduced in [2]. In the same
paper, it was shown that (3.5) and (3.6) are conditions of regularity for Db

a. Conse-
quently, if conditions (3.5) and (3.6) are satisfied, then from Theorem 3.1 we deduce
the following.

Corollary 3.4. Let f ∈ C[0, 2π] and ω(f ; t) be its modulus of continuity satisfying
conditions (1.4) and (1.5) as t→ +0, where F (t) ≥ 0.
Then

‖f −Db
a(f)‖ = O

(
1

bn − an
F

(
π

2(bn − an)

))
.

Also, if we take λn = n, an = n, bn = n+1, ∀n ≥ 1, then the deferred generalized
de la Vallée Poussin mean reduces to ordinary Cesàro mean of the sum sn(f ;x),

σn(f ;x) :=
1

n+ 1

n∑
m=0

sm(f ;x).

Therefore, Theorem 3.1 also implies:

Corollary 3.5. Let f ∈ C[0, 2π] and ω(f ; t) be its modulus of continuity satisfying
conditions (1.4) and (1.5) as t→ +0, where F (t) ≥ 0.
Then

‖f − σn(f)‖ = O
(

1

n+ 1
F

(
π

2(n+ 1)

))
.

Let us specify the function F (t) as follows:

F (t) =

{
tγ−1, 0 < γ < 1;

log
(
π
t

)
, γ = 1.

Using this function the following estimations from Theorem 3.1, Corollary 3.4,
and Corollary 3.5 can be deduced (of course all other conditions are maintaining):

(a) From Theorem 3.1:

‖f − Vn(λ, a, b; f)‖ =

{
Oγ
(

1
(bn−an+λn)γ

)
, 0 < γ < 1;

log(2(bn−an+λn))
bn−an+λn , γ = 1.

(b) From Corollary 3.4:

‖f −Db
a(f)‖ =

{
Oγ
(

1
(bn−an)γ

)
, 0 < γ < 1;

log(2(bn−an))
bn−an , γ = 1.

(c) From Corollary 3.5 (this is a particular case of a result given in [4]):

‖f − σn(f)‖ =

{
Oγ
(

1
(n+1)γ

)
, 0 < γ < 1;

log(2(n+1))
n+1 , γ = 1.
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3.2. Approximation by deferred generalized de la Vallée Poussin mean of double
Fourier series

Let C([−π, π]2) be the class of real-valued functions of two variables that are
continuous on [−π, π] × [−π, π] := [−π, π]2 and 2π periodic with respect to x and
y. We recall that the double Fourier series of the function f(x, y) ∈ C([−π, π]2) is
defined by

f(x, y) ∼
∞∑
m=1

∞∑
n=1

λmn

[
amn cosmx cosny + bmn sinmx cosny

+ cmn cosmx sinny + dmn sinmx sinny

]
,

where

λmn =


1/4, if m = n = 0,

1/2, if m > 0, n = 0 ∨m = 0, n > 0,

1, if m > 0, n > 0,

and

amn =
1

π2

∫ π

−π

∫ π

−π
f(u, v) cosmu cosnvdudv,

bmn =
1

π2

∫ π

−π

∫ π

−π
f(u, v) sinmu cosnvdudv,

cmn =
1

π2

∫ π

−π

∫ π

−π
f(u, v) cosmu sinnvdudv,

dmn =
1

π2

∫ π

−π

∫ π

−π
f(u, v) sinmu sinnvdudv,

are the Fourier coefficients of the function f(x, y).
The sequence {sm,n(f ;x, y)} represents the sequence of partial sums of the dou-

ble Fourier series which can be rewritten in integral form by

sm,n(x, y) := sm,n(f ;x, y) :=
1

π2

∫ π

−π

∫ π

−π
f(x+ u, y + v)Dm(u)Dn(v)dudv.

To my best knowledge the double de la Vallée Poussin mean of sm,n(x, y) is
defined by (see [3])

V (p,q)
m,n (f ;x, y) :=

1

(p+ 1)(q + 1)

n+p∑
k=n

m+q∑
`=m

sk,`(x, y), p ≥ 0, q ≥ 0. (3.7)

The mean V
(p,q)
m,n (f ;x, y) is generalized in [11] as follows (for our purposes we

modify it ”a little bit”). Let λ := (λm) and µ := (µn) be two monotone non-decreasing
sequences of integers such that λ1 = µ1 = 1, λm+1 − λm ≤ 1, and µn+1 − µn ≤ 1.

The mean

V λ,µm,n(f ;x, y) =
1

λmµn

m−1∑
k=m−λm

n−1∑
k=n−µn

sk,`(x, y), (m,n ≥ 1), (3.8)
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is called the (mn)-th deferred generalized de la Vallée-Poussin mean of the sequence
(sk,`(x, y)) generated by sequences (λm) and (µn).

The (total) modulus of continuity of a continuous function f(x, y), 2π-periodic
in each variable, in symbols f ∈ C([−π, π]2), is defined by (see [12], page 283)

ω1(f, δ1, δ2) = sup
x,y

sup
|u|≤δ1,|v|≤δ2

|f(x+ u, y + v)− f(x, y)|, δ1, δ2 ≥ 0.

To estimate the deviation

max
(x,y)∈Q

∣∣V λ,µm,n(f ;x, y)− f(x, y)
∣∣ ,

which is the main result of this subsection, first we denote

φxy(s, t) := f(x+ s, y + t) + f(x− s, y + t)

+ f(x+ s, y − t) + f(x− s, y − t)− 4f(x, y).

Now, we are in able to prove the following.

Theorem 3.6. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s) and

ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4) and
(1.5) as s, t→ +0, and F1(s), F2(t) ≥ 0 two mediate functions. Then

max
(x,y)∈Q

∣∣V λ,µm,n(f ;x, y)− f(x, y)
∣∣ = O

(
1

λmλn
F1

(
π

2λm

)
F2

(
π

2λn

))
.

Proof. After some transforms we get:

V λ,µm,n(f ;x, y)− f(x, y) =
1

π2

∫ π
2

0

∫ π
2

0

φxy(2s, 2t)Kλ,µ
mn(s, t)dsdt, (3.9)

where

Kλ,µ
mn(s, t) :=

1

λmµn

m−1∑
k=m−λm

n−1∑
`=n−µn

sin (2k + 1) s

sin s

sin (2`+ 1) t

sin t
.

Without difficulty the quantity Kλ,µ
mn(s, t) can be written as

Kλ,µ
mn(s, t) =

sin(λms) sin[(2m− λm) s] sin(µnt) sin[(2n− µn) t]

λmµn sin2 s sin2 t
.

Therefore, we have:

|V λ,µm,n(f ;x, y)− f(x, y)| ≤
(

4

π

)2 ∫ π
2

0

∫ π
2

0

ω1(f, s, t)|Kλ,µ
mn(s, t)|dsdt

= O

(∫ π
2λm

0

∫ π
2µn

0

+

∫ π
2

π
2λm

∫ π
2µn

0

+

∫ π
2λm

0

∫ π
2

π
2µn

+

∫ π
2

π
2λm

∫ π
2

π
2µn

)
:= O (S1 + S2 + S3 + S4) . (3.10)
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Using Jordan’s inequality sin ν ≥ 2
πν for 0 < ν ≤ π

2 , given assumptions, and Lemma
2.1, we obtain:

S1 = O (1)

∫ π
2λm

0

∫ π
2µn

0

s−1t−1ω1(f, s, t)dsdt (3.11)

= O
(

1

λmµn
F1

(
π

2λm

)
F2

(
π

2µn

))
.

Using the same arguments and Lemma 2.2, we also obtain:

S2 = O (1)

∫ π
2

π
2λm

∫ π
2µn

0

s−2t−1ω1(f, s, t)dsdt (3.12)

= O
(

1

λmµn
F1

(
π

2λm

)
F2

(
π

2µn

))
.

With very similar reasoning, we get:

S3 = O (1)

∫ π
2λm

0

∫ π
2

π
2µn

s−1t−2ω1(f, s, t)dsdt (3.13)

= O
(

1

λmµn
F1

(
π

2λm

)
F2

(
π

2µn

))
.

Finally, based on given assumptions, and Lemma 2.2 twice, we have:

S4 = O (1)

∫ π
2

π
2λm

∫ π
2

π
2µn

s−2t−2ω1(f, s, t)dsdt (3.14)

= O
(

1

λmµn
F1

(
π

2λm

)
F2

(
π

2µn

))
.

Subsequently, inserting (3.11), (3.12),(3.13), and (3.14) into (3.9), the requested esti-
mation follows.
The proof is completed. �

Specifying functions Fi(z), (i = 1, 2), by:

Fi(z) =

{
zγi−1, 0 < γi < 1;

log
(
π
z

)
, γi = 1

then Theorem 3.6 implies:

Corollary 3.7. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s) and

ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4) and
(1.5) as s, t→ +0. Then

max
(x,y)∈Q

∣∣V λ,µm,n(f ;x, y)− f(x, y)
∣∣ =



O
(

1
λ
γ1
m µ

γ2
n

)
, 0 < γ1, γ2 < 1;

O
(

log(2µn)

λ
γ1
m µn

)
, 0 < γ1 < 1, γ2 = 1;

O
(

log(2λm)

λmµ
γ2
n

)
, γ1 = 1, 0 < γ2 < 1;

O
(

log(2λm) log(2µn)
λmµn

)
, γ1 = γ2 = 1
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In particular case, it is clear that V m,nm+1,n+1(f ;x, y) ≡ σm,n(f ;x, y), which is the

double Fejèr mean of the sequence (sk,`(x, y)). Thus, Theorem 3.6 also implies:

Corollary 3.8. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s) and

ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4) and
(1.5) as s, t→ +0. Then

max
(x,y)∈Q

|σm,n(f ;x, y)− f(x, y)| =



O
(

1
(m+1)γ1 (n+1)γ2

)
, 0 < γ1, γ2 < 1;

O
(

log(2(n+1))
(m+1)γ1 (n+1)

)
, 0 < γ1 < 1, γ2 = 1;

O
(

log(2(m+1))
(m+1)(n+1)γ2

)
, γ1 = 1, 0 < γ2 < 1;

O
(

log(2(m+1)) log(2(n+1))
(m+1)(n+1)

)
, γ1 = γ2 = 1

Let a := (an), b := (bn), c := (cn), and d := (dn) be sequences of non-negative
integers with conditions

1 ≤ bm − am + λm, 1 ≤ dn − cn + µn, (m,n = 1, 2, . . . ). (3.15)

The mean V λ,µm,n(f ;x, y) can be generalized further by

V λ,µm,n(a, b, c, d; f ;x, y) =
1

λmµn

bm−1∑
k=am−λm

dn−1∑
k=cn−µn

sk,`(x, y), (m,n ≥ 1), (3.16)

is called the (mn)-th double deferred generalized de la Vallée Poussin mean of the
sequence (sk,`(x, y)) generated by sequences (λm) and (µn).

Remark 3.9. Note that for am = bm = m and cn = dn = n, for all m,n ≥ 1, we
obtain

V λ,µm,n(a, b, c, d; f ;x, y) ≡ V λ,µm,n(f ;x, y),

and

V m,nm+1,n+1(a, b, c, d; f ;x, y) ≡ σm,n(f ;x, y).

The mean V λ,µm,n(a, b, c, d; f ;x, y) given by (3.16) can be used to prove the follow-
ing general theorem.

Theorem 3.10. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s)

and ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4)
and (1.5) as s, t→ +0, and F1(s), F2(t) ≥ 0 two mediate functions. Then

max
(x,y)∈Q

∣∣V λ,µm,n(a, b, c, d; f ;x, y)− f(x, y)
∣∣

= O
(

1

(bm − am + λm)(dn − cn + µn)

×F1

(
π

2(bm − am + λm)

)
F2

(
π

2(dn − cn + µn)

))
.

Proof. Because of the similarity with the proof of Theorem 3.6 we omit the proof of
this theorem. �
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Remark 3.11. One should note that Theorem 3.6 is a particular case of Theorem 3.10
(when am = bm and cn = dn; ∀m,n ≥ 1). Moreover, it covers Corollary 3.7 and
Corollary 3.8 as well (when am = bm, cn = dn, λm = m, and µn = n; ∀m,n ≥ 1).

Further, let a := (am), b := (bm), c := (cn), and d := (dn) be sequences of
non-negative integers with conditions

am < bm, cn < dn, (m,n = 1, 2, . . . ), (3.17)

and

lim
m→∞

bm = +∞, lim
n→∞

dn = +∞. (3.18)

If λm = 1 and µn = 1 for all m,n ≥ 1, then the double deferred de la Vallée
Poussin mean V λ,µm,n(a+ 2, b+ 1, c+ 2, d+ 1; f ;x, y) reduces to

Db,d
a,c(f ;x, y) :=

1

(bm − am)(dn − cn)

bm∑
k=am+1

dn∑
`=cn+1

sk,`(f ;x, y),

which is the double deferred Cesàro mean of the sum sk,`(f ;x, y) introduced implicitly
in [13]. It was shown there, that (3.17) and (3.18) are conditions of regularity for Db,d

a,c.
Therefore, if conditions (3.17) and (3.18)) are satisfied, then Theorem 3.10 implies
the following.

Corollary 3.12. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s)

and ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4)
and (1.5) as s, t→ +0, and F1(s), F2(t) ≥ 0 two mediate functions. Then

max
(x,y)∈Q

∣∣Db,d
a,c(f ;x, y)− f(x, y)

∣∣
= O

(
1

(bm − am)(dn − cn)
F1

(
π

2(bm − am)

)
F2

(
π

2(dn − cn)

))
.
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Positive definite kernels on the set of integers,
stability, some properties and applications

Arnaldo De La Barrera, Osmin Ferrer and José Sanabria

Abstract. We define and investigate a class of positive definite kernel so called
equivalent-kernel. We formulate and prove an analogous of Paley-Wiener theorem
in the context of positive definite kernel. The main ingredient in the proof is
Kolmogorov decomposition. Finally, some applications to stochastic processes
are given.
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Introduction

Positive definite kernels play a prominent role in some applications such as nu-
merical solution of partial differential equations, machine learning, computer graphics,
problem moment and probability theory. In the present work we explore some prop-
erties of positive definite kernels. For this kernels one obtains some similar results to
equivalents bases in Banach spaces and Riesz bases in Hilbert spaces. An important
tool to be used is a version of a classic result due to Kolmogorov, which will be called
a Kolmogorov decomposition of the positive definite kernel K (see [3]). We will use
Kolmogorov decomposition of a positive definite kernel to obtain a characterization
results of equivalents kernels (see Theorem 3.3). This result is similar to a known
result for equivalents bases, Riesz bases and stochastic processes. Using the above,
one obtains an analogue Paley-Wiener Theorem (see [8]) in the context of positive
definite kernels (see Theorem 3.4). Finally, some applications to stochastic processes
are given.
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1. Paley-Wiener theorem

Orthonormal bases are very important in Hilbert space theory. There is another
less known but also very useful type of bases: the Riesz bases. This section will be
devoted to them. More about these bases can be found in Young’s book [8].

Definition 1.1. A basis in a Hilbert space is a Riesz basis if it is equivalent to an
orthonormal basis.

The fundamental criterium of stability, and historically the first one, is due to
Paley and Wiener [7]. It is based on the known fact that a linear bounded operator
T on a Banach space is invertible if

‖I − T‖ < 1.

Theorem 1.2. (Paley -Wiener) Let {xn}n∈N be a basis in the Banach space X, and
suppose that {yn}n∈N is a sequence of elements of X such that∥∥∥∥∥

N∑
n=1

cn(xn − yn)

∥∥∥∥∥ ≤ λ
∥∥∥∥∥

N∑
n=1

cnxn

∥∥∥∥∥ ,
for all N ∈ N, some constant λ, with 0 ≤ λ < 1 and for any sequence of scalars
{cn}n∈N. Then {yn}n∈N is a basis for X equivalent to {xn}n∈N.

See [8, Theorem 10] for a proof.

2. Kolmogorov decomposition theorem

2.1. The Hilbert space associated to a positive definite operator valued kernel

Let {Hn}n∈Z be a family of Hilbert spaces. An operator valued kernel on Z to
{Hn}n∈Z is an application K : Z× Z→

⋃
m,n∈Z L(Hm,Hn) such that

K(n,m) ∈ L(Hm,Hn) for n,m ∈ Z.

In this section and the following one, unless it is otherwise stated, all the kernels
will be operator valued ones.

A sequence {hn} in ⊕n∈ZHn is said to have finite support if hn = 0 except for
a finite number of integers n.

A kernel K on Z to {Hn}n∈Z is a positive definite kernel if∑
n,m∈Z

〈K(n,m)hm, hn〉Hn
≥ 0,

for every sequence {hn} in ⊕n∈ZHn with finite support.
Let K be a positive definite kernel. Let F be the linear space of elements⊕

n∈ZHn and Fo be the space of elements in F with finite support.
Define BK : Fo ×Fo → C with

BK(f, g) =
∑

m,n∈Z
〈K(n,m)fm, gn〉Hn

, (2.1)

for f, g ∈ Fo, f = {fn}, g = {gn}, fn, gn ∈ Hn.
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Note that BK satisfies all the properties of an inner product, except for the fact
that the set

NK = {h ∈ Fo : BK(h, h) = 0},
could be non-trivial.

According to the Cauchy-Schwarz inequality

NK = {h ∈ Fo : BK(h, g) = 0, for all g ∈ Fo},
hence NK is a linear subspace of Fo.

The quotient space Fo/NK is also a linear subspace. If [h] stands for the class
of the element h in Fo/NK , then the application

〈[h], [g]〉 = BK(h, g), h, g ∈ Fo,

is well defined. To prove that 〈·, ·〉 is an inner product on Fo/NK is straightforward.
The completion of Fo/NK with respect to the norm induced by this inner prod-

uct is a Hilbert space. It is known as the Hilbert space associated to the positive definite
kernel K and it is denoted by HK . The inner product and the norm of HK will be
represented as 〈·, ·〉HK

and ‖ · ‖HK
respectively. This norm will be named as the norm

induced by K.

2.2. Kolmogorov Decomposition Theorem

The following theorem is a version of the classic result of Kolmogorov (see [5]
for a historical review).

Theorem 2.1 (Kolmogorov). Let K be a positive definite kernel. Then there exists a
Hilbert space HK and a map V defined on Z such that V (n) belongs to L(Hn,HK)
for each n ∈ Z and

(a) K(n,m) = V ∗(n)V (m) if n,m ∈ Z.

(b) HK =
∨
n∈Z

V (n)Hn.

(c) The decomposition is unique in the following sense: if H′ is another Hilbert space
and V ′ defined on Z is an application such that V ′(n) ∈ L(Hn,HK) for each
n ∈ Z that satisfies (a) and (b), then there exists a unitary operator Φ : HK → H′
such that ΦV (n) = V ′(n) for all n ∈ Z.

A proof of this theorem can be found in [3, Theorem 3.1].
An application V that satisfies the property (a) in Theorem 2.1 will be called The

Kolmogorov Decomposition of the Kernel K or simply, a Decomposition of the kernel
K (see [3]). The property (b) is referred to as the minimality property of Kolmogorov
Decomposition. The meaning of property (c) is that, under the minimality condition
(b), the Kolmogorov decomposition is essentially unique.

3. Some results for positive definite kernels

3.1. Equivalent definite positive kernels

Suppose the family of Hilbert spaces {Hn}n∈Z reduces to a single space, i.e.
Hn = H for all n ∈ Z.
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In this section some results given in [1] are extended to the case of kernel to
operator valued.

Definition 3.1. Let K1,K2 : Z× Z→ L(H) be two positive definite kernels.
It is said that K1 and K2 are equivalent if there exist two constants A,B with

0 < A ≤ B such that

A‖[h]K1
‖2HK1

≤ ‖[h]K2
‖2HK2

≤ B‖[h]K1
‖2HK1

,

for h ∈ Fo.

Remark 3.2. Let K : Z × Z → L(H) be a positive definite kernel. Let h ∈ Fo and
{hn}n∈Z a sequence in H with finite support.

By virtue of the definition of norm induced by the kernel K and Kolmogorov
decomposition theorem it is obtained

‖[h]‖2HK
= 〈[h], [h]〉HK

=
∑

n,m∈Z
〈K(n,m)hm, hn〉H

=
∑

m,n∈Z
〈VK(n)∗VK(m)hm, hn〉H =

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

H

.

The following is one of our results.

Theorem 3.3. Let K1,K2 : Z × Z → L(H) be two positive definite kernels. Then the
following conditions are equivalent:

(i) The kernels K1 y K2 are equivalents.
(ii) There exists a linear bounded bijective application, with bounded inverse

Φ : HK1
→ HK2

,

such that

ΦVK1(n) = VK2(n) for all n ∈ Z.
(iii) There exist two constants A,B with 0 < A ≤ B such that

A
∑

n,m∈Z
〈K1(n,m)hm, hn〉H ≤

∑
n,m∈Z

〈K2(n,m)hm, hn〉H

≤ B
∑

n,m∈Z
〈K1(n,m)hm, hn〉H ,

for all sequence with finite support {hn}n∈Z ⊂ H.

Proof. Let VK1
and VK2

be the Kolmogorov decomposition of the kernels K1, K2 and
Let HK1

and HK2
the associated Hilbert spaces.

Remark 3.2 allows us to write condition (iii) in the following way: there exist two
constants A and B with 0 < A ≤ B such that

A‖[h]K1‖2HK1
≤ ‖[h]K2‖2HK2

≤ B‖[h]K1‖2HK1
,

for h ∈ Fo.
Consequently the conditions (i) and (iii) are equivalents.
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Next, suppose that condition (ii) is true. Since Φ is a linear bounded and invertible
operator, then there exist two constants ao, bo with 0 < ao ≤ bo such that

ao‖f‖HK1
≤ ‖Φ(f)‖HK2

≤ bo‖f‖HK1
,

for all f ∈ HK1 .
Let f ∈ HK1

given by

f =
∑
n∈Z

VK1
(n)hn,

where {hn}n∈Z is a sequence in H with finite support.
Then

a2
o

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK1

≤

∥∥∥∥∥∑
n∈Z

VK2
(n)hn

∥∥∥∥∥
2

HK2

≤ b2o

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK1

.

On the other hand, since K1 and K2 are positive definite kernels, by the Kolmogorov
decomposition theorem we have

K1(n,m) = V ∗K1
(n)VK1(m), m, n ∈ Z

and
K2(n,m) = V ∗K2

(n)VK2(m), m, n ∈ Z.
Taking in to account the above expression we have that∥∥∥∥∥∑

n∈Z
VK1

(n)hn

∥∥∥∥∥
2

HK1

=

〈∑
m∈Z

VK1
(m)hm,

∑
n∈Z

VK1
(n)hn

〉
HK1

=
∑

m,n∈Z
〈VK1

(n)∗VK1
(m)hm, hn〉H

=
∑

m,n∈Z
〈K1(n,m)hm, hn〉H ,

similarly, ∥∥∥∥∥∑
n∈Z

VK2
(n)hn

∥∥∥∥∥
2

HK2

=
∑

m,n∈Z
〈K2(n,m)hm, hn〉H .

Thus, choosing A = a2
o and B = b2o we have

A
∑

m,n∈Z
〈K1(n,m)hm, hn〉H ≤

∑
m,n∈Z

〈K2(n,m)hm, hn〉H

≤ B
∑

m,n∈Z
〈K1(n,m)hm, hn〉H ,

where {hn}n∈Z is a sequence in H with finite support.
Now, let us suppose that condition (iii) is valid.
The application Φo : Fo,K1

→ Fo,K2
is defined as follows

Φo

(∑
n∈Z

VK1
(n)hn

)
=
∑
n∈Z

VK2
(n)hn,
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where {hn}n∈Z is a sequence in H with finite support. It is not hard to prove that Φo

is a linear operator.
In what follows we will proof that Φo is a bounded above and bounded below operator.
By the Kolmogorov decomposition theorem we obtain∑

m,n∈Z
〈K2(n,m)hm, hn〉H =

∑
m,n∈Z

〈VK2
(n)∗VK2

(m)hm, hn〉H .

Taking into account the above result and the way that the operator Φo was defined
we arrive to the next result∑
m,n∈Z

〈K2(n,m)hm, hn〉H =

〈∑
m∈Z

VK2
(m)hm,

∑
n∈Z

VK2
(n)hn

〉
HK2

=

∥∥∥∥∥∑
n∈Z

VK2(n)hn

∥∥∥∥∥
2

HK2

=

∥∥∥∥∥Φo

(∑
n∈Z

VK1(n)hn

)∥∥∥∥∥
2

HK2

.

In a similar way we have∑
m,n∈Z

〈K1(n,m)hm, hn〉H =

∥∥∥∥∥∑
n∈Z

VK1
hn

∥∥∥∥∥
2

HK1

.

By (iii),

A

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK1

≤

∥∥∥∥∥Φo

(∑
n∈Z

VK1
(n)hn

)∥∥∥∥∥
2

HK2

≤ B

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK1

.

The last chain of inequalities shows us that Φo is a bounded above and bounded below
operator. Even more the domain and the range of Φo are dense in the spaces HK1

and
HK2

respectively. Then this operator can be extended to a bounded operator with
bounded inverse say Φ : HK1

→ HK2
. By construction

ΦVK1(n) = VK2(n) for all n ∈ Z. �

Theorem 3.3 has similarities with results referring to equivalent basic sequences
in Banach spaces, for more details on the topic (see [6, 2]).

Our next stability result for positive definite kernels is similar to a stability
theorem for equivalent bases due to Paley-Wiener (see [8, Theorem 10]).

In first place we will fix the notation. Given two positive definite kernels K : Z×
Z→ L(H) and K1 : Z× Z→ L(H), let VK and VK1

the Kolmogorov decompositions
of K and K1 respectively and let HK and HK1

the induced Hilbert spaces.

Theorem 3.4. Let K : Z×Z→ L(H) and K1 : Z×Z→ L(H) be two positive definite
kernels. If VK1

(n) ∈ L(H,HK) for all n ∈ Z and satisfies∥∥∥∥∥∑
n∈Z

(VK(n)− VK1
(n))hn

∥∥∥∥∥
HK

≤ λ

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
HK

,

for any sequence with finite support {hn}n∈Z ⊂ H, where λ ∈ (0, 1), then K1 is
equivalent to K.
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Proof. Let us define the operator T : HK → HK as follows

T

(∑
n∈Z

VK(n)hn

)
=
∑
n∈Z

(VK(n)− VK1(n))hn,

where {hn}n∈Z is a sequence in H with finite support.

By hypothesis T is well defined and it is a linear operator. From the definition of T
and by hypothesis we have.∥∥∥∥∥T

(∑
n∈Z

VK(n)hn

)∥∥∥∥∥
2

HK

≤ λ2

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

HK

.

Hence, T is a bounded operator and moreover

‖T‖ ≤ |λ| < 1.

Next, let us consider the operator I − T : HK → HK , as usual I : HK → HK is the
identity operator.

Since ‖T‖ < 1, by a well known functional analysis Theorem, I − T is an invertible
bounded linear operator. Moreover,

(I − T )

(∑
n∈Z

VK(n)hn

)
=
∑
n∈Z

VK(n)hn − T

(∑
n∈Z

VK(n)hn

)

=
∑
n∈Z

VK(n)hn −

(∑
n∈Z

(VK(n)− VK1
(n))hn

)
=
∑
n∈Z

VK1
(n)hn.

From the above, it follows that there are positive constants m and M with m ≤ M
such that

m

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
HK

≤

∥∥∥∥∥(I − T )

(∑
n∈Z

VK(n)hn

)∥∥∥∥∥
HK

=

∥∥∥∥∥∑
n∈Z

VK1(n)hn

∥∥∥∥∥
HK

≤M

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
HK

.

By Remark 3.2 ∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

HK

=
∑

m,n∈Z
〈K(n,m)hm, hn〉H .
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By hypothesis VK1
(n) ∈ L(H,HK) for all n ∈ Z, thus VK1

(n)hn ∈ HK . Then∑
n,m∈Z

〈K1(n,m)hm, hn〉H =
∑

m,n∈Z
〈VK1

(n)∗VK1
(m)hm, hn〉H

=
∑

m,n∈Z
〈VK1(m)hm, VK1(n)hn〉HK

=

∥∥∥∥∥∑
n∈Z

VK1
(n)hn

∥∥∥∥∥
2

HK

.

Replacing these expressions in the above inequalities, we derive the existence of pos-
itive constants A and B with A ≤ B such that

A
∑

m,n∈Z
〈K(n,m)hm, hn〉H ≤

∑
m,n∈Z

〈K1(n,m)hm, hn〉H

≤ B
∑

m,n∈Z
〈K(n,m)hm, hn〉H ,

for all sequences {hn}n∈Z in H with finite support.
Applying Theorem 3.3, it follows that K1 is equivalent to K. �

4. Applications to stochastic processes

4.1. Multivariate stochastic processes

In this section it will be used the decomposition of the covariance Kernels of the
stochastic processes (see [3], Section 1, Chapter 6).

Let (Ω, F, P ) be a probability space, where F is a σ-algebra of subsets of Ω and
P is a probability measure on F . A stochastic variable is a function x : Ω → C,
which is measurable with respect to the σ-algebra F . A stochastic process is a family
{xn}n∈Z of stochastic variables. Let L2(P ) be the Hilbert space of the measurable
functions from F to Ω with integrable square, this is,

L2(P ) =

{
x : Ω→ C : x is a measurable function and

∫
Ω

|x(ω)|2dP (ω) < +∞
}

equipped with the inner product

〈x, y〉L2(P ) =

∫
Ω

x(ω)y(ω)dP (ω).

From here on, only stochastic processes with variables in L2(P ) will be considered.
The mean-value variable is defined by

mn = E(xn) =

∫
Ω

xn(ω)dP (ω)

and it is convenient to assume that mn = 0 for all n ∈ Z. The correlation of the
stochastic process {xn}n∈Z is given by

K(m,n) = Kmn =

∫
Ω

xn(ω)xm(ω)dP (ω) = 〈xn, xm〉L2(P ).



Positive definite kernels on the set of integers 849

for all m,n ∈ Z.
It is straightforward that the correlation kernel of this process is a positive

definite kernel. In fact
n∑

i,j=m

Kijλjλi =

n∑
i,j=m

〈xj , xi〉L2(P )λjλi

=

n∑
i,j=m

〈λjxj , λixi〉L2(P )

=

∥∥∥∥∥∥
n∑

j=m

λjxj

∥∥∥∥∥∥
2

L2(P )

≥ 0,

for all m,n ∈ Z,m ≤ n, and λk ∈ C, where k = m,m+ 1, ..., n.
A stochastic process {xn}n∈Z is said to be stationary (in a wide sense) if its

correlation kernel is a Toeplitz kernel, that is

K(m,n) = Kn−m for all m,n ∈ Z.

In this case it can be used the Naimark Decomposition Theorem in order to associate
the stationary stochastic process {xn}n∈Z with the Hilbert space HK , the unitary
operator S ∈ L(HK) and the operator Q ∈ L(C,HK) such that

Kn = Q∗SnQ, n ∈ Z.

The geometric settings for the prediction problem can be extended in order to deal
with the multivariate case too. Let notice that a random variable xn : Ω → C, of a
stochastic process {xn}n∈Z ⊂ L2(P ), can be interpreted as an operator from C to
L2(P ) defining x̃n : C→ L2(P ) as

x̃n(λ) = λxn,

and the elements of the correlation kernel of the process can be calculated according
to the rule

K(m,n) = (x̃m)∗x̃n.

Also, it must be noticed that many stochastic processes have the same correlation
kernel. Having this in mind it is convenient to adopt the following terminology. The
main object used to describe a multivariate process will be its correlation kernel K
which is supposed to be positive definite and K(m,n) ∈ L(Hn,Hm) for all m,n ∈ Z,
where H = {Hn}n∈Z is a family of Hilbert spaces.

Definition 4.1. A pair [K, X], where K is a Hilbert space and X = {Xn}n∈Z is a
family of operators Xn in L(Hn,K), is called a geometric model of the multivariate
process with correlation kernel K, if

K(m,n) = X∗mXn.

The Kolmogorov Decomposition Theorem shows that given a positive definite
kernel K, there exists a geometric model of the multivariate process with correlation
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kernel K. If [K, X] is the geometric model of the multivariate process with covariance
kernel K then HX will be the subspace of K generated for this model, that is,

HX =
∨
n∈Z

XnHn. (4.1)

If [K′, X ′] is another geometric model of the same process, then the Kolmogorov
Decomposition Theorem guarantees the existence of an unitary operator Φ : HX →
HX′ such that ΦXn = X ′n for all n ∈ Z. This means that the geometry of the process
is essentially determined by the choise of a geometric model such that

K =
∨
n∈Z

XnHn. (4.2)

4.2. Equivalent multivariate stochastic processes

From here on, Hn = H for all n ∈ Z and the covariance kernels of the processes
will be positive definite.

Theorem 4.2 (Isomorphism). Let [W, X] be the geometric model of a multivariate
process and let K : Z × Z → L(H) be the kernel of covariance associated with the
process. Then there exists an unit operator Φ : HK → HX such that

ΦVK(n) = Xn for all n ∈ Z.

Proof. Let [W, X], X = {Xn}n∈Z be a geometric model of a multivariate process and
K : Z× Z→ L(H) be the kernel of covariance associated with the process.

It follows that the covariance kernel and the space generated by the process is given
by

K(n,m) = X∗nXm and HX =
∨
n∈Z

XnH.

On the other hand, since K is a positive definite kernel one more time by the Kol-
mogorov decomposition theorem there exists a Hilbert space HK and an application
VK(n) ∈ L(H,HK) for all n ∈ Z such that

K(n,m) = V ∗K(n)VK(m) and HK =
∨
n∈Z

VK(n)H.

Let us define the application Φ : HK → HX in the following way

Φ

(∑
n∈Z

VK(n)hn

)
=
∑
n∈Z

Xnhn,

where {hn}n∈Z is a sequence with finite support in H.
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Then we have∥∥∥∥∥Φ

(∑
n∈Z

VK(n)hn

)∥∥∥∥∥
2

HX

=

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

=
∑

m,n∈Z
〈Xmhm, Xnhn〉HX

=
∑

m,n∈Z
〈K(n,m)hm, hn〉H =

∑
m,n∈Z

〈V ∗K(n)VK(m)hm, hn〉H

=
∑

m,n∈Z
〈VK(m)hm, VK(n)hn〉K =

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
2

HK

,

all of this show us that the application Φ can be extended by continuity to an unit
operator from HK over HX and moreover ΦVK(n) = Xn for all n ∈ Z. �

Definition 4.3. Two geometric models of multivariate processes [K, X] and [L, Y ] are
said to be equivalent , if dim (HX) = dim (HY ) and there are two constants A,B
with 0 < A ≤ B such that

A

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

≤

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

≤ B

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

,

where {hn}n∈Z is a sequence in H with finite support.

By Theorem 4.2 and definitions we have the following.

Proposition 4.4. Let [W, X] and [W1, Y ] be two geometric model of multivariate pro-
cess and let K1 and K2 be two kernels of covariance associated with the processes.
Then K1 and K2 are equivalent kernels if and only if X = {Xn}n∈Z and Y = {Yn}n∈Z
are equivalent processes.

As an application we give the proof of the results obtained in [4].

Theorem 4.5. Let [K, X] and [L, Y ] be two geometric models of multivariate processes.
The following conditions are equivalent:

(i) The models of the multivariate processes [K, X] and [L, Y ] are equivalent.
(ii) There is a bijective bounded linear application with bounded inverse ψ : HX →
HY such that

ψXn = Yn for all n ∈ Z.
(iii) There exist two constants A,B with 0 < A ≤ B such that

A

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

≤

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
2

HY

≤ B

∥∥∥∥∥∑
n∈Z

Xnhn

∥∥∥∥∥
2

HX

,

for each sequence with finite support {hn}n∈Z ⊂ H.

Proof. The equivalence between (i) and (iii) follows by definition. Next, we are going
to show that (i) implies (ii) to this end let us assume that X = {Xn}n∈Z and Y =
{Yn}n∈Z are equivalent processes let K1 and K2 be the kernels of covariance associated
with the processes X = {Xn}n∈Z and Y = {Yn}n∈Z respectively. Since X = {Xn}n∈Z
and Y = {Yn}n∈Z are equivalent, then by proposition 4.4 we concluded that K1 and
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K2 are equivalent kernels. By Theorem 3.3, there exists a biyective bounded linear
application linear with bounded inverse Φ : HK1

→ HK2
such that

ΦVK1
(n) = VK2

(n) for all n ∈ Z.

Let us consider the operators φ1 : HK1 → HX such that

φ1VK1(n) = Xn for all n ∈ Z

and φ2 : HK2
→ HY such that

φ2VK2
(n) = Yn for all n ∈ Z.

From the above it follows that

φ−1
2 Φφ−1

1 Xn = Yn for all n ∈ Z.

Now suppose that (ii) holds then there is a bijective bounded linear application with
bounded inverse ψ : HX → HY such that

ψXn = Yn for all n ∈ Z.

Let K1 and K2 be two kernels of covariance associated with the processes X =
{Xn}n∈Z and Y = {Yn}n∈Z, respectively.
Let us consider the operators φ1 : HK1 → HX such that

φ1VK1(n) = Xn for all n ∈ Z

and φ2 : HK2
→ HY such that

φ2VK2
(n) = Yn for all n ∈ Z.

From the above it follows that

φ−1
2 ψφ1VK1(n) = VK2(n) for all n ∈ Z.

By Theorem 3.3, we obtain dim (HK1) = dim (HK2) and there exist two positive
constants A,B, A ≤ B such that

A
∑

n,m∈Z
〈K1(n,m)hm, hn〉H ≤

∑
n,m∈Z

〈K2(n,m)hm, hn〉H

≤ B
∑

n,m∈Z
〈K1(n,m)hm, hn〉H ,

where {hn}n∈Z is a sequence in H with finite support.
The result comes up from the fact that K1(m,n) = X∗mXn and K2(m,n) = Y ∗mYn. �

In the multivariate stochastic processes setting it is possible to obtain a result
similar to that of the theorem on stability (see Theorem 1.2).

The following is our result about stability of multivariate stochastic processes.

Theorem 4.6. Let [W, Y ] be a geometrical model of a multivariate stochastic process,
HY the subspace generated by the process, and suppose Xn ∈ L(H,HY ) for all n ∈ Z
such that ∥∥∥∥∥∑

n∈Z
(Yn −Xn)hn

∥∥∥∥∥
HY

≤ δ

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
HY

, (4.3)



Positive definite kernels on the set of integers 853

for some constant δ, 0 < δ < 1, and any sequence {hn}n∈Z in H with finite support.
Then the geometric model of the multivariate process [K, X] is equivalent to [W, Y ].

Proof. Let K and K1 be two kernels of covariance associated with the processes
Y = {Yn}n∈Z and X = {Xn}n∈Z, respectively.

Let us consider the operators Φ1 : HK → HY such that

Φ1VK(n) = Yn for all n ∈ Z

and Φ2 : HK1
→ HX such that

Φ2VK1
(n) = Xn for all n ∈ Z.

From the above and hypothesis we have

HK1
⊂ HK and Φ2

(∑
n∈Z

VK1
(n)hn

)
=
∑
n∈Z

Xnhn = Φ1

(∑
n∈Z

VK1
(n)hn

)
.

Then∥∥∥∥∥∑
n∈Z

(VK(n)− VK1
(n))hn

∥∥∥∥∥
HK

=

∥∥∥∥∥Φ1

∑
n∈Z

(VK(n)− VK1
(n))hn

∥∥∥∥∥
HY

=

∥∥∥∥∥∑
n∈Z

(Φ1VK(n)− Φ2VK1
(n))hn

∥∥∥∥∥
HY

=

∥∥∥∥∥∑
n∈Z

(Yn −Xn)hn

∥∥∥∥∥
HY

≤ δ

∥∥∥∥∥∑
n∈Z

Ynhn

∥∥∥∥∥
HY

= δ

∥∥∥∥∥∑
n∈Z

Φ1VK(n)hn

∥∥∥∥∥
HY

= δ

∥∥∥∥∥∑
n∈Z

VK(n)hn

∥∥∥∥∥
HK

,

for any sequence {hn}n∈Z in H with finite support.
Finally, by Theorem 3.4 it follows that K1 and K are equivalent kernels. Therefore
X = {Xn}n∈Z is equivalent to Y = {Yn}n∈Z. �
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Hybrid conjugate gradient-BFGS methods based
on Wolfe line search

Khelladi Samia and Benterki Djamel

Abstract. In this paper, we present some hybrid methods for solving uncon-
strained optimization problems. These methods are defined using proper com-
binations of the search directions and included parameters in conjugate gradient
and quasi-Newton method of Broyden–Fletcher–Goldfarb–Shanno (CG-BFGS).
Their global convergence under the Wolfe line search is analyzed for general ob-
jective functions. Numerical experiments show the superiority of the modified
hybrid (CG-BFGS) method with respect to some existing methods.

Mathematics Subject Classification (2010): 65K05, 90C26, 90C30.

Keywords: Unconstrained optimization, global convergence, conjugate gradient
methods, quasi-Newton methods, Wolfe line search.

1. Introduction

Conjugate gradient methods are very important ones for solving unconstrained
optimization problems, especially for large scale problems. It is well known that
Fletcher-Reeves (FR) [7], Conjugate Descent (CD) [6] and Dai-Yuan (DY) [4] conju-
gate gradient methods have strong convergence properties, but they may not perform
well in practice. On the other hand, Hestnes-Stiefel (HS) [9], Polak-Ribiere-Polyak
(PRP) [13, 14] and Liu-Storey (LS) [12] conjugate gradient methods may not con-
verge in general, but they often perform better than FR, CD and DY. To combine the
best numerical performances of the LS method and the global convergence properties
of the CD method, Yang et al. [17] proposed a hybrid LS-CD method. Dai and Liao
[3] proposed an efficient conjugate gradient method (Dai-Liao type method). Later,
some more efficient Dai-Liao type conjugate gradient method, known as DHSDL and
DLSDL were proposed in [21].

The rest of this paper is organized as follows. In Section 2, we give various
possibilities to determine the step size and the search direction. A hybridization of

Received 23 December 2019; Accepted 08 February 2020.
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the conjugate gradient method (CG) and the BFGS method will also be presented.
In Section 3, we consider the modification of LSCD method, termed as MLSCD and
the modification of (DHSDL and DLSDL) termed as MMDL [15] and we prove the
global convergence using the Wolfe line search instead of backtracking line search
used by the authors in [15]. In Section 4, we consider the hybrid method BFGS-CG
termed as H-BFGS-CG1 in [15] and we prove the global convergence with the Wolfe
line search termed WH-BFGS-CG. In section 5, we report some numerical results and
compare the performance of the different considered methods. Finally, we give some
conclusions to end this paper.

2. Preliminaries

Consider the following unconstrained optimization problem

min f(x), x ∈ Rn, (2.1)

where f : Rn −→ R is a continuously differentiable function. Let gk be the gradient of
f(x) at the current iterative point xk, then the classical conjugate gradient method
for (2.1) is given by

xk+1 = xk + αkdk, (2.2)

in which αk > 0 is the step size found by one of the line search methods, and dk is
the search direction defined by

dk =

{
−g0, k = 0,
−gk + βkdk−1, k ≥ 1,

(2.3)

where βk is an appropriately defined real scalar, known as the conjugate gradient
parameter.

Since Fletcher and Reeves introduced the nonlinear conjugate gradient method in
1964, many formulae have been proposed using various modifications of the conjugate
gradient direction dk and the parameter βk. The most popular parameters βk are:

βFR
k =

‖ gk ‖2

‖ gk−1 ‖2
, βCD

k = − ‖ gk ‖
2

gTk−1dk−1
, βDY

k =
‖ gk ‖2

yTk−1dk−1
,

βHS
k =

gTk yk−1
yTk−1dk−1

, βPRP
k =

gTk yk−1
‖ gk−1 ‖2

, βLS
k = − gTk yk−1

gTk−1dk−1
,

βDHSDL
k =

‖ gk ‖2 − ‖gk‖
‖gk−1‖ | g

T
k gk−1 |

µ | gTk dk−1 | +dTk−1yk−1
− t g

T
k sk−1

dTk−1yk−1
, µ > 1, t > 0,

βDLSDL
k =

‖ gk ‖2 − ‖gk‖
‖gk−1‖ | g

T
k gk−1 |

µ | gTk dk−1 | −dTk−1gk−1
− t g

T
k sk−1

dTk−1yk−1
, µ > 1, t > 0,

where

yk−1 = gk − gk−1, sk−1 = xk − xk−1
and ‖ · ‖ denotes the Euclidean vector norm.



Hybrid conjugate gradient-BFGS methods 857

In this paper, the step size αk is determined using the following Wolfe line search
conditions

f(xk + αkdk) ≤ f(xk) + ραkg
T
k dk,

gTk+1dk ≥ σgTk dk, 0 < ρ < σ < 1.
(2.4)

To combine the best numerical performances of the PRP method and the global
convergence properties of the FR method, Touati-Ahmed and Storey [16] proposed
a hybrid PRP-FR method which is called the H1 method in [19], with the gradient
parameter is defined as

βH1
k = max{0,min{βPRP

k , βFR
k }}. (2.5)

Gilbert and Nocedal in [8] modified (2.5) to

βk = max{−βFR
k ,min{βPRP

k , βFR
k }}.

A hybrid HS-DY conjugate gradient method was proposed by Dai and Yuan in [5],
termed as the H2 method in [19] where the gradient parameter is defined as

βH2
k = max{0,min{βHS

k , βDY
k }}. (2.6)

We consider hybrid CG methods where the search direction dk, k ≥ 1, from (2.3) is
modified using one of the following tow rules [15]

dk = D(βk, gk, dk−1) = −

(
1 + βk

gTk dk−1

‖gk‖2

)
gk + βkdk−1 (2.7)

dk = D1(βk, gk, dk−1) = −Bkgk +D(βk, gk, dk−1) (2.8)

and the conjugate gradient parameter βk is defined using some proper combinations of
the parameters βk given above and already defined hybridizations of these parameters.

Zhang et al. in [20, 18] proposed a modification to the FR method, termed as
the MFR method, using the search direction

dk = D(βFR
k , gk, dk−1) (2.9)

Zhang in [18] also proposed a modified DY method, which is known as the MDY
method, using the search direction

dk = D(βDY
k , gk, dk−1) (2.10)

The MFR and MDY methods posses very useful property

gTk dk = −‖gk‖2 (2.11)

If the exact line search is used, then MFR and the MDY methods reduce to the FR
and the DY methods, respectively.

The MFR method has proven to be globally convergent for non convex functions
with the Wolfe line search or the Armijo line search, and it is very efficient in real
computations [20].

However, it is not known whether the MDY method converges globally. So, in
[19], the authors replaced βFR

k in (2.9) and βDY
k in (2.10) by βH1

k and βH2
k , respec-

tively. Then, they defined new hybrid PRP-FR and HS-DY methods, which they call
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the NH1 method and the NH2 method, respectively. These methods are based on the
search directions

NH1 : dk = D(βH1
k , gk, dk−1) (2.12)

NH2 : dk = D(βH2
k , gk, dk−1). (2.13)

It is clear that NH1 and NH2 are descent methods, they satisfy (2.11).

On the other hand, the search direction dk in quasi-Newton methods is obtained as
a solution of the linear algebraic system

Bkdk = −gk, (2.14)

where Bk is an approximation of the Hessian. The initial approximation is the iden-
tity matrix (B0 = I) and the subsequent updates Bk are defined by an appropriate
formula.

Here, we are interested in the BFGS update formula, defined by

Bk+1 = Bk +
yky

T
k

sTk yk
− Bksks

T
kBk

sTkBksk
, (2.15)

where sk = xk+1 − xk, yk = gk+1 − gk. The next secant equation must hold

Bk+1sk = yk, (2.16)

which is possible only if the curvature condition

yTk sk > 0 (2.17)

is satisfied.

The three-term hybrid BFGS conjugate gradient method was proposed in [10].
That method uses best properties of both BFGS and CG methods and defines a hybrid
BFGS-CG method for solving some selected unconstrained optimization problems,
resulting in improvement in the total number of iterations and the CPU time.

3. Modification of LSCD, DHSDL and DLSDL methods

3.1. A modified LSCD conjugate gradient method

We consider the modification of LSCD method, defined in [17] by

βLSCD
k = max

{
0,min

{
βLS
k , βCD

k

}}
, (3.1)

dk =

{
−g0 k = 0
dk = −gk + βLSCD

k dk−1 k ≥ 1,

and define the MLSCD method [15] with the search direction

dk = D(βLSCD
k , gk, dk−1). (3.2)

Now, we give the algorithm of this method using the Wolfe line search.
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3.1.1. Algorithm WMLSCD.

• Step0: Given a starting point x0 and a parameter 0 < ε < 1.
• Step1: Set k = 0 and compute d0 = −g0.
• Step2: If ‖gk‖ ≤ ε, STOP; else go to Step3.
• Step3: Find the step size αk ∈]0, 1] using the Wolfe line search.
• Step4: Compute xk+1 = xk + αkdk.
• Step5: Compute yk = gk+1 − gk and go to Step6.
• Step6: Compute

βLS
k+1 = −y

T
k gk+1

gTk dk
, βCD

k+1 = −‖gk+1‖ 2

gTk dk
,

βLSCD
k+1 = max

{
0,min

{
βLS
k+1, β

CD
k+1

}}
.

• Step7: Compute the search direction dk+1 = D(βLSCD
k+1 , gk+1, dk).

• Step8: Let k := k + 1 and go to Step2.

3.1.2. Convergence of the WMLSCD conjugate gradient method. It is easy to prove
the next theorem.

Theorem 3.1. Let βk be any CG parameter. Then, the search direction

dk = D(βk, gk, dk−1)

satisfies

gTk dk = −‖gk‖2 . (3.3)

To prove the global convergence of the WMLSCD method, we need the following
assumptions.
Assumption 3.1 The level set L = {x ∈ Rn/f(x) ≤ f(x0)} is bounded.
Assumption 3.2 The function f is continuously differentiable in some neighbourhood
N of L and its gradient is Lipschitz continuous. Namely, there exists a constant L > 0
such that

‖g(x)− g(y)‖ ≤ L ‖x− y‖ , for all x, y ∈ N . (3.4)

It is well known that if Assumption 3.2 holds, then there exists a positive constant γ,
such that

‖gk‖ ≤ γ,∀k (3.5)

The next lemma, often called the Zoutendijk condition [22], is used to prove the global
convergence of nonlinear CG method.

Lemma 3.2. [15] Let the Assumption 3.1 and Assumption 3.2 be satisfied. Let the
sequence {xk} be generated by the MLSCD method with the Wolfe line search. Then
it holds that

∞∑
k=1

‖gk‖4

‖dk‖2
< +∞ (3.6)

Theorem 3.3. Let the Assumption 3.1 and Assumption 3.2 hold. Then, the sequence
{xk} generated by the WMLSCD method with the Wolfe line search satisfies

lim inf
k→∞

‖gk‖ = 0 (3.7)
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Proof. In order to gain the contradiction, let us suppose that (3.7) does not hold.
Then, there exists a constant c > 0 such that

‖gk‖ ≥ c, for all k (3.8)

Clearly, (3.2) can be rewritten into the form

dk = −lkgk + βLSCD
k dk−1, lk = 1 + βLSCD

k

gTk dk−1

‖gk‖2
. (3.9)

Now from (3.9), it follows that

dk + lkgk = βLSCD
k dk−1

which further implies

(dk + lkgk)
2

=
(
βLSCD
k dk−1

)2
⇐⇒ ‖dk‖2 + 2lkd

T
k gk + l2k ‖gk‖

2
=
(
βLSCD
k

)2 ‖dk−1‖2 ,
and subsequently

‖dk‖2 =
(
βLSCD
k

)2 ‖dk−1‖2 − 2lkd
T
k gk − l2k ‖gk‖

2
. (3.10)

Notice that

βLSCD
k = max

{
0,min

{
βLS
k , βCD

k

}}
≤
∣∣βCD

k

∣∣ (3.11)

Dividing both sides of (3.10) by (gTk dk)2, we get from (3.11), (3.3), (3.8) and the
definition of βCD

k that

‖dk‖2

‖gk‖4
=

‖dk‖2

(gTk dk)2
=
(
βLSCD
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lkd
T
k gk

(gTk dk)2
− l2k

‖gk‖2

(gTk dk)2

≤
(
βCD
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

=

(
‖ gk ‖2

−gTk−1dk−1

)2
‖dk−1‖2

(gTk dk)2
− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

Finally

‖dk‖2

‖gk‖4
≤

(
‖ gk ‖2

−gTk−1dk−1

)2
‖dk−1‖2

(gTk dk)2
− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2
(3.12)
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Now, applying (3.3), (3.12) becomes

‖dk‖2

‖gk‖4
≤ ‖ gk ‖4

‖ gk−1 ‖4
2 ‖dk−1‖2

‖ gk ‖4
− 2lk
‖ gk ‖2

− l2k
‖gk‖2

‖ gk ‖4

=
‖dk−1‖2

‖ gk−1 ‖4
+

2lk
‖ gk ‖2

− l2k
1

‖ gk ‖2

=
‖dk−1‖2

‖ gk−1 ‖4
− (lk − 1)

2

‖ gk ‖2
+

1

‖ gk ‖2

≤ ‖dk−1‖2

‖ gk−1 ‖4
+

1

‖ gk ‖2

≤
k∑

j=0

1

‖gj‖2

≤ k + 1

c2
.

The last inequalities imply ∑
k≥1

‖gk‖4

‖dk‖2
≥ c2

∑
k≥1

1

k + 1
=∞

which contradicts to (3.6). This completes the proof. �

3.2. A modified DHSDL and DLSDL conjugate gradient method

In this part, we have the hybrid MMDL method, proposed in [15], which is
defined by the search direction dk as follows

βMMDL
k = max

{
0,min

{
βDHSDL
k , βDLSDL

k

}}
dk = D(βMMDL

k , gk, dk−1).

We give the algorithm of this method where we have changed the backtracking line
search by the Wolfe line search.

3.2.1. Algorithm WMMDL.

• Step0: Given a starting point x0, a parameter 0 < ε < 1 and µ > 1.
• Step1: Set k = 0 and compute d0 = −g0.
• Step2: If ‖gk‖ ≤ ε, STOP; else go to Step3.
• Step3: Find the step size αk ∈]0, 1] using the Wolfe line search.
• Step4: Compute xk+1 = xk + αkdk.
• Step5: Compute yk = gk+1 − gk, sk = xk+1 − xk and go to Step6.
• Step6: Compute

βDHSDL
k+1 =

‖ gk+1 ‖2 −‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gTk+1dk | +dTk yk
− αk

gTk+1sk

dTk yk

βDLSDL
k+1 =

‖ gk+1 ‖2 −‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gTk+1dk | −dTk gk
− αk

gTk+1sk

dTk yk
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βMMDL
k+1 = max

{
0,min

{
βDHSDL
k+1 , βDLSDL

k+1

}}
.

• Step7: Compute the search direction dk+1 = D(βMMDL
k+1 , gk+1, dk).

• Step8: Let k := k + 1 and go to Step2.

3.2.2. Convergence of the WMMDL conjugate gradient method. The following the-
orem prove the global convergence of the WMMDL method.

Theorem 3.4. Let the Assumption 3.1 and Assumption 3.2 be satisfied. Then the
sequence {xk} generated by the WMMDL method with the Wolfe line search satisfies

lim inf
k→∞

‖gk‖ = 0 (3.13)

Proof. Assume, on the contrary, that (3.13) does not hold. Then, there exists a con-
stant c > 0 such that

‖gk‖ ≥ c, for all k (3.14)

Denote

lk = 1 + βMMDL
k

gTk dk−1

‖gk‖2

Then we can write

dk + lkgk = βMMDL
k dk−1

and further

(dk + lkgk)
2

=
(
βMMDL
k dk−1

)2
⇐⇒ ‖dk‖2 + 2lkd

T
k gk + l2k ‖gk‖

2
=
(
βMMDL
k

)2 ‖dk−1‖2 .
Thus,

‖dk‖2 =
(
βMMDL
k

)2 ‖dk−1‖2 − 2lkd
T
k gk − l2k ‖gk‖

2
. (3.15)

Having in view, µ > 1 as well as dTk gk < 0 and applying the extended conjugacy
condition dTk yk−1 = −αgTk sk−1, α > 0, which was exploited in [3, 21], we get

βDHSDL
k+1 =

‖ gk+1 ‖2 −‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gTk+1dk | +dTk yk
− αk

gTk+1sk

dTk yk

≤
‖ gk+1 ‖2 −‖gk+1‖

‖gk‖ | g
T
k+1gk |

µ | gTk+1dk | +dTk yk

=
‖ gk+1 ‖2 −‖gk+1‖

‖gk‖ | g
T
k+1gk |

µ | gTk+1dk | +dTk (gk+1 − gk)

=
‖ gk+1 ‖2 −‖gk+1‖

‖gk‖ | g
T
k+1gk |

µ | gTk+1dk | +dTk gk+1 − dTk gk

≤ ‖ gk+1 ‖2

µ | gTk+1dk | +dTk gk+1 − dTk gk

≤ ‖ gk+1 ‖2

−dTk gk
.
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Further

βDLSDL
k+1 =

‖ gk+1 ‖2 −‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gTk+1dk | −dTk gk
− αk

gTk+1sk

dTk yk

≤
‖ gk+1 ‖2 −‖gk+1‖

‖gk‖ | g
T
k+1gk |

µ | gTk+1dk | −dTk gk

≤ ‖ gk+1 ‖2

µ | gTk+1dk | −dTk gk

≤ ‖ gk+1 ‖2

−dTk gk
.

Now, we conclude

βMMDL
k = max

{
0,min

{
βDHSDL
k , βDLSDL

k

}}
≤ ‖ gk ‖2

−dTk−1gk−1
(3.16)

Next, dividing both sides of (3.15) by (gTk dk)2, we get from (3.3), (3.16) and (3.14)
that

‖dk‖2

‖gk‖4
=

‖dk‖2

(gTk dk)2
=
(
βMMDL
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lkd
T
k gk

(gTk dk)2
− l2k

‖gk‖2

(gTk dk)2

=
(
βMMDL
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

≤

(
‖ gk ‖2

−gTk−1dk−1

)2
‖dk−1‖2

(gTk dk)2
− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

=
‖ gk ‖4

‖ gk−1 ‖4
2 ‖dk−1‖2

‖ gk ‖4
− 2lk
‖ gk ‖2

− l2k
‖gk‖2

‖ gk ‖4

=
‖dk−1‖2

‖ gk−1 ‖4
+

2lk
‖ gk ‖2

− l2k
1

‖ gk ‖2

=
‖dk−1‖2

‖ gk−1 ‖4
− (lk − 1)

2

‖ gk ‖2
+

1

‖ gk ‖2

≤ ‖dk−1‖2

‖ gk−1 ‖4
+

1

‖ gk ‖2

≤
k∑

j=0

1

‖gj‖2

≤ k + 1

c2
.

These inequalities imply ∑
k≥1

‖gk‖4

‖dk‖2
≥ c2

∑
k≥1

1

k + 1
=∞
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Therefore, ‖gk‖ ≥ c causes a contradiction to (3.6). Consequently, (3.13) is verified.
This completes the proof. �

4. Hybrid BFGS-CG methods

It is known that conjugate gradient method are better compared to the quasi-
Newton method in terms of the CPU time. In addition, BFGS is more costly in terms
of the memory storage requirements than CG. On the other hand, the quasi-Newton
methods are better in terms of the number of iterations and the number of function
evaluations. For this purpose, various hybridizations of quasi-Newton methods and
CG methods have been proposed by various researchers.

In [10], the authors proposed a hybrid search direction that combines the quasi-
Newton and CG methods, where dk is defined by

dk =

{
−Bkgk k = 0
−Bkgk + η(−gk + βkdk−1) k ≥ 1,

where η > 0 and βk =
gTk gk−1
gTk dk−1

.

A hybrid direction search between BFGS update of the Hessian matrix and the
conjugate parameter βk was proposed in [1, 11].

4.1. WH-BFGS-CG method

P. S. Stanimirovic et al. proposed in [15] a three-term hybrid BFGS-CG method,
called H-BFGS-CG, defined by the search direction

dk =

{
−Bkgk, k = 0
D1(βLSCD

k+1 , gk, dk−1), k ≥ 1
(4.1)

The following algorithm correspond to this method, where we have changed the
backtracking line search by the Wolfe line search.

4.1.1. Algorithm WH-BFGS-CG.

• Step0: Given a starting point x0 and a parameter 0 < ε < 1.
• Step1: Set k = 0 and compute g0, B0 = I, d0 = −B0g0.
• Step2: If ‖gk‖ ≤ ε, STOP; else go to Step3.
• Step3: Find the step size αk ∈]0, 1] using the Wolfe line search.
• Step4: Compute xk+1 = xk + αkdk.
• Step5: Compute yk = gk+1 − gk, sk = xk+1 − xk and go to Step6.
• Step6: Compute

βLS
k+1 = −y

T
k gk+1

gTk dk
, βCD

k+1 = −‖gk+1‖ 2

gTk dk
,

βLSCD
k+1 = max

{
0,min

{
βLS
k+1, β

CD
k+1

}}
.

• Step7: Compute Bk+1 using (2.15).
• Step8: Compute the search direction dk+1 = D1(βLSCD

k+1 , gk+1, dk).
• Step9: Let k := k + 1 and go to Step2.
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4.2. Convergence analysis of WH-BFGS-CG method

Assumption 4.1:
H1: The objective function f is twice continuously differentiable.
H2: The level set L is convex. Moreover, there exist positive constants c1 and

c2 such that

c1 ‖z‖2 ≤ zTH(x)z ≤ c2 ‖z‖2 , for all z ∈ Rn and x ∈ L,
where H(x) is the Hessian of f .

H3: The gradient g is Lipschitz continuous at the point x∗, that is, there exists
a positive constant c3 satisfying

‖g(x)− g(x∗)‖ ≤ c3 ‖x− x∗‖ ,
for all x in a neighbourhood of x∗.

Theorem 4.1. [2] Let {Bk} be generated by the BFGS update formula (2.15), where
sk = xk+1 − xk, yk = gk+1 − gk. Assume that the matrix Bk is symmetric positive
definite and satisfies (2.16) and (2.17) for all k. Furthermore, assume that {sk} and
{yk} satisfy the inequality

‖yk −G∗sk‖
‖sk‖

≤ εk,

for some symmetric positive definite matrix G∗ and for some sequence {εk} possessing
the property

∞∑
k=1

εk <∞,

then

lim
k−→∞

‖(Bk −G∗) sk‖
‖sk‖

= 0,

and the sequences {‖Bk‖} ,
{∥∥B−1k

∥∥} are bounded.

Theorem 4.2. (Sufficient descent and global convergence) Consider Algorithm WH-
BFGS-CG. Assume that the conditions H1, H2 and H3 in Assumption 4.1 are satisfied
as well as conditions of Theorem 4.1. Then

lim
k→∞

‖gk‖2 = 0.

Proof. From (4.1), we have

gTk dk = −gTk Bkgk − gTk gk − βLSCD
k gTk dk−1 + βLSCD

k gTk dk−1

≤ −c1 ‖gk‖2 − ‖gk‖2 = −(c1 + 1) ‖gk‖2

≤ −‖gk‖2 , 0 < c1 + 1 ≤ 1,

then
gTk dk ≤ −‖gk‖

2
. (4.2)

We conclude that the sufficient descent holds.
Further, from Wolfe line search conditions and (4.2), it holds

f(xk)− f(xk + αkdk) ≥ −ραkg
T
k dk ≥ ραk ‖gk‖2 . (4.3)
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Since f(xk) is decreasing and the sequence f(xk) is bounded below and by the con-
dition H2, we have

lim
k→∞

f(xk)− f(xk + αkdk) = 0. (4.4)

Hence (4.3) and (4.4) imply

lim
k→∞

ραk ‖gk‖2 = 0.

Now, since ρ > 0 and αk > 0, we have

lim
k→∞

‖gk‖2 = 0.

This completes the proof. �

5. Numerical results

In this section, some numerical results are reported to illustrate the behaviours
of WMLSCD, WMMDL and WH-BFGS-CG methods. The step size αk is determined
using the Wolfe line search.

We use the Matlab Langage with a precision ε = 10−6.

We designate by:

• k: The number of iterations required to obtain the solution.
• Time: The execution time in second.

Example 5.1. We take the function

f(x) =

n∑
i=1

(exp(xi)− xi).

We take as starting point x0 = (1, 1, . . . , 1)T .

The minimum of this function is reached at the point

x∗ = (0, 0, . . . , 0)T and f(x∗) = n.

The results obtained are summarised in the following tables:

For n = 3, we have

Methods k Time ‖ gk ‖
WMLSCD 19 0.149532 8.0732e− 07
WMMDL 19 0.161138 8.0732e− 07
WH-BFGS-GC 5 0.073673 1.4372e− 08

For n = 100, we have

Methods k Time ‖ gk ‖
WMLSCD 22 3.883876 5.8263e− 07
WMMDL 22 3.803220 5.8263e− 07
WH-BFGS-GC 5 1.622640 8.2976e− 08
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For n = 500, we have

Methods k Time ‖ gk ‖
WMLSCD 24 74.325460 6.4631e− 07
WMMDL 24 70.101070 6.4631e− 07
WH-BFGS-GC 5 21.087659 1.8554e− 07

Example 5.2. We take the function

f(x) =

n∑
i=1

ln(exp(xi) + exp(−xi)).

We take as starting point x0 = (1.1, 1.1, . . . , 1.1)T

The minimum of this function is reached at the point

x∗ = (0, 0, . . . , 0)T and f(x∗) = n ln(2).

The results obtained are summarised in the following tables:

For n = 3, we have

Methods k Time ‖ gk ‖
WMLSCD 96 0.348543 9.6801e− 07
WMMDL 95 0.443647 9.5309e− 07
WH-BFGS-GC 47 0.375461 8.4400e− 08

For n = 100, we have

Methods k Time ‖ gk ‖
WMLSCD 104 40.083872 9.9132e− 07
WMMDL 104 83.918822 9.9369e− 07
WH-BFGS-GC 66 20.465962 8.4827e− 07

For n = 200, we have

Methods k Time ‖ gk ‖
WMLSCD 107 83.209667 9.1391e− 07
WMMDL 108 80.273199 9.2334e− 07
WH-BFGS-GC 69 52.410529 8.2027e− 07

For n = 300, we have

Methods k Time ‖ gk ‖
WMLSCD 109 171.535865 9.8675e− 07
WMMDL 111 205.430203 9.5399e− 07
WH-BFGS-GC 70 110.807414 7.9846e− 07

Commentaries: The numerical tests show clearly that the proposed hybrid algorithm
WH-BFGS-GC Wolfe based on line search is more efficient in terms of number of
iterations and computation time than WMLSCD and WMMDL methods.
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6. Conclusion

We have considered the hybrid conjugate gradient methods, MLSCD, MMDL
and H-BFGS-CG, for solving unconstrained optimization problems where we have
changed the backtracking line search given in [15] by the Wolfe line search. Firstly, we
have shown that the obtained WMLSCD, WMMDL and WH-BFGS-CG algorithms
are globally convergent for general functions.

Secondly, the numerical simulations confirm the effectiveness of the approach
WH-BFGS-CG. In fact, the WH-BFGS-CG method is the most efficient in terms of
number of iterations and computation time compared to WMLSCD and WMMDL
methods which was not the case with backtracking line search, where the computation
time of H-BFGS-GC was greater than MLSCD and MMDL [15].
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Analysis of quasistatic viscoelastic viscoplastic
piezoelectric contact problem with friction and
adhesion

Nadhir Chougui

Abstract. In this paper we study the process of bilateral contact with adhe-
sion and friction between a piezoelectric body and an insulator obstacle, the so-
called foundation. The material’s behavior is assumed to be electro-viscoelastic-
viscoplastic; the process is quasistatic, the contact is modeled by a general non-
local friction law with adhesion. The adhesion process is modeled by a bonding
field on the contact surface. We derive a variational formulation for the problem
and then, under a smallness assumption on the coefficient of friction, we prove
the existence of a unique weak solution to the model.The proofs are based on a
general results on elliptic variational inequalities and fixed point arguments.
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Keywords: Viscoelastic, viscoplastic, piezoelectric, bilateral contact, non local
Coulomb friction, adhesion, quasi-variational inequality, weak solution, fixed
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1. Introduction

A piezoelectric body is one that produces an electric charge when a mechanical
stress is applied (the body is squeezed or stretched). Conversely, a mechanical defor-
mation (the body shrinks or expands) is produced when an electric field is applied.
This kind of materials appears usually in the industry as switches in radiotronics,
electroacoustics or measuring equipments. Piezoelectric materials for which the me-
chanical properties are elastic are also called electro-elastic materials, those for which
the mechanical properties are viscoelastic are also called electro-viscoelastic mate-
rials and those for which the mechanical properties are viscoplastic are also called
electro-viscoplastic materials. Therfore, a viscoelastic-viscoplastic piezoelectric con-
tact problems are considered. Different models have been developed to describe the
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interaction between the electrical and mechanical fields (see, e.g. [2, 14, 18] and the
references therein). A static frictional contact problem for electric-elastic material
was considered in [3], under the assumption that the foundation is insulated. Electro-
elastic-visco-plastic and elastic-visco-plastic contact problems were recently studied
in [13, 15].

Adhesion may take place between parts of the contacting surfaces. It may be
intentional, when surfaces are bonded with glue, or unintentional, as a seizure between
very clean surfaces. The adhesive contact is modeled by a bonding field on the contact
surface, denoted in this paper by β; it describes the pointwise fractional density of
active bonds on the contact surface, and sometimes referred to as the intensity of
adhesion. Following [11], [12], the bonding field satisfies the restrictions 0 ≤ β ≤ 1;
when β = 1 at a point of the contact surface, the adhesion is complete and all the
bonds are active; when β = 0 all the bonds are inactive, severed, and there is no
adhesion; when 0 < β < 1 the adhesion is partial and only a fraction β of the bonds
is active. Basic modelling can be found in [11, 12]. Analysis of models for adhesive
contact can be found in [7, 4, 6].

In this work we continue in this line of research, where we extend the result
established in [8]. The novelty here lies in the fact that we consider a viscoelastic-
viscoplastic piezoelectric body, the contact is bilateral and the friction is described by
a nonlocal version of Coulomb’s law of dry friction with adhesion. A similar boundary
conditions are used in [20], where the constitutive law of the material is viscoelastic.

This paper is structured as follows. In Section 2 we present the viscoelastic-
viscoplaastic piezoelectric contact model with friction and adhesion and provide com-
ments on the contact boundary conditions. In Section 3 we list the assumptions on the
data and derive the variational formulation. In Section 4, we present our main exis-
tence and uniqueness result, Theorem (4.1), which states the unique weak solvability
of the contact problem under a smallness assumption on the coefficient of friction.

2. The model

We consider a body made of a piezoelectric material which occupies the domain
Ω ⊂ Rd(d = 2, 3) with a smooth boundary ∂Ω = Γ and a unit outward normal ν. The
body is acted upon by body forces of density f0 and has volume free electric charges
of density q0. It is also constrained mechanically and electrically on the boundary. To
describe these constraints we assume a partition of Γ into three open disjoint parts
Γ1, Γ2 and Γ3, on the one hand, and a partition of Γ1∪ Γ2 into two open parts Γa and
Γb, on the other hand. We assume that meas Γ1 > 0 and meas Γa > 0. The body is
clamped on Γ1 and, therefore, the displacement field vanishes there. Surface tractions
of density f2 act on Γ2. We also assume that the electrical potential vanishes on Γa
and a surface electrical charge of density q2 is prescribed on Γb. On Γ3 the body is in
adhesive and frictional contact with an insulator obstacle, the so-called foundation.

We are interested in the deformation of the body on the time interval [0, T ].
The process is assumed to be quasistatic, i.e. the inertial effects in the equation of
motion are neglected. We denote by x ∈ Ω∪Γ and t ∈ [0, T ] the spatial and the time
variable, respectively, and, to simplify the notation, we do not indicate in what follows
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the dependence of various functions on x or t. Here and everywhere in this paper, i,
j, k, l = 1, ..., d, summation over two repeated indices is implied, and the index that
follows a comma represents the partial derivative with respect to the corresponding
component of x. The dot above variable represents the time derivatives.

We denote by Sd the space of second-order symmetric tensors on Rd (d = 2, 3)
and by ”.”, ‖.‖ the inner product and the norm on Sd and Rd, respectively, that
is u.υ = uiυi, ‖υ‖ = (υ.υ)1/2 for u = (ui), υ = (υi) ∈ Rd, and σ.τ = σijτij ,

‖σ‖ = (σ.σ)1/2 for σ = (σij), τ = (τij) ∈ Sd. We also use the usual notation for
the normal components and the tangential parts of vectors and tensors, respectively,
given by υν = υ · ν, υτ = υ − υνν, σν = σijνiνj , and στ = σν − σνν. With these
assumptions, the classical model for the process is the following.

Problem (P). Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ : Ω ×
[0, T ] → Sd, an electric potential ϕ : Ω × [0, T ] → R, an electric displacement field
D : Ω× [0, T ]→ Rd and a bonding field β : Ω× [0, T ]→ R such that

σ(x, t) = Aε(u̇(x, t)) + Fε(u(x, t))

+
t∫

0

G(σ(x, s), ε(u(x, s))ds− E∗E(ϕ(x, t))
in Ω× (0, T ), (2.1)

D = BE(ϕ) + Eε(u) in Ω× (0, T ), (2.2)

Divσ + f0 = 0 in Ω× (0, T ), (2.3)

divD = q0 in Ω× (0, T ) , (2.4)

u = 0 on Γ1 × (0, T ), (2.5)

σν = f2 on Γ2 × (0, T ), (2.6)

uν = 0, on Γ3 × (0, T ), (2.7)

• ‖στ + γτβ
2Rτ (uτ )‖ ≤ µp(|Rσν |),

• ‖στ + γτβ
2Rτ (uτ )‖ < µp(|Rσν |)

⇒ u̇τ = 0,
• ‖στ + γτβ

2Rτ (uτ )‖ = µp(|Rσν |)
⇒ ∃ λ > 0, such that:
στ + γτβ

2Rτ (uτ ) = −λ u̇τ ,

on Γ3 × (0, T ), (2.8)

β̇(t) = −(β(t)γτ‖Rτ (uτ (t))‖2 − εa)+ on Γ3 × (0, T ), (2.9)

ϕ = 0 on Γa × (0, T ) , (2.10)

D.ν = q2 on Γb × (0, T ), (2.11)

D.ν = 0 on Γ3 × (0, T ), (2.12)

u(0) = u0 in Ω, (2.13)

β(0) = β0 on Γ3. (2.14)

Equations (2.1) and (2.2) represent the electro-viscoelastic-viscoplastic constitutive
law of the material in which σ = (σij) is the stress tensor, ε(u) = (εij(u)) denotes
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the linearized strain tensor, A and F are the elasticity and viscosity tensors, respec-
tivelly, G denotes a viscoplastic function, E(ϕ) = −∇ϕ is the electric field, E = (eijk)
represents the third-order piezoelectric tensor, E∗ = (e∗ijk) where e∗ijk = ekij is its
transpose such that:

Eσ.υ = σ.E∗υ ∀σ ∈ Sd, υ ∈ Rd, (2.15)

D = (D1, ..., Dd) is the electric displacement vector and B =(Bij) denotes the electric
permittivity tensor. Equations (2.3) and (2.4) are the equilibrium equations for the
stress and electric-displacement fields, respectively, in which “Div” and “div” denote
the divergence operators for tensor and vector valued functions, respectively. Condi-
tions (2.5) and (2.6) are the displacement and traction boundary conditions in which
σν represents the Cauchy stress vector, whereas (2.10) and (2.11) represent the elec-
tric boundary conditions. Note that we need to impose assumption (2.12) for physical
reasons. Indeed, this condition models the case when the obstacle is a perfect insula-
tor and was used in [3, 9]. Condition (2.7) represents the bilateral contact, where uν
represents the normal displacement. Conditions (2.8) is a non local Coulomb’s law of
friction coupled with adhesion in which µ denotes the coefficient of friction and γτ is
a given adhesion coefficients, uτ and στ are tangential components of vector u and
tensor σ, respectively, σν represents the normal stress, u̇τ is the tangential velocity
on the bondary, the operator R : H−

1
2 → L2(Γ) (see e.eg. [10]) is a linear continuous

operator used to regularize the normal trace of stress which is too rough on Γ, p is a
non-negative function, the so-called friction bound, and Rτ is the truncation operator
defined by

Rτ (υ) =


υ if ‖υ‖ ≤ L,

L
υ

‖υ‖
if ‖υ‖ > L.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any
additional traction (see e.eg. [19]). The evolution of the bonding field is governed by
the differential equation (2.9) with given positive adhesion coefficients γτ and εa where
r+ = max{0, r}. Finally, (2.13) and (2.14) represent the initial conditions in which u0

and β0 are the prescribed initial displacement and bonding fields, respectively.

3. Preliminaries and variational formulation

In this section, we list the assumptions on the data and derive a variational
formulation for the contact problem. To this end we need to introduce some notation
and preliminaries. We use the notation H, H1, H and H1 for the following spaces

H = {υ = (υi) |υi ∈ L2(Ω), i = 1, d}, H1 = {υ = (υi) | ε(υ) ∈ H},
H = {τ = (τij) |τij = τji ∈ L2(Ω), i, j = 1, d}, H1 = {τ ∈ H |Divτ ∈ H}.
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The spaces H, H1, H and H1 are real Hilbert spaces endowed with the canonical inner
products given by

(u, υ)H =

∫
Ω

uiυi dx, (u, υ)H1
= (u, υ)H + (ε(u), ε(υ)H, .

(σ, τ)H =

∫
Ω

σijτij dx, (σ, τ)H1
= (σ, τ)H + (Divσ,Divτ)H ,

such that ε : H1 −→ H and Div : H1 −→ H are the deformation and divergence
operators, respectively defined by

ε(υ) = (εij(υ)), εij(υ) = 1
2 (υi,j + υj,i) ∀ υ ∈ H1,

Div τ = (τij,j) ∀ τ ∈ H1.

and the associated norms are denoted by ‖ ·‖H , ‖ ·‖H1
, ‖ ·‖H and ‖ ·‖H1

, respectively.
We recall that for every element υ ∈ H1 we denote by υ the trace γυ of υ on Γ. If
σ ∈ C 1(Ω)N×N then, the following Green’s formula holds

(σ, ε(υ))H + (Divσ, υ)H =
∫
Γ

σν · υ da, ∀υ ∈ H1. (3.1)

For every real Hilbert space X we employ the usual notation for the spaces Lp(0, T ;X)
and W k,p(0, T ;X), p ∈ [0,∞], k = 1, 2, ...

We now list the assumptions on the problem’s data.
(a) A = (aijkl) : Ω× Sd −→ Sd such that

A(x, τ) = (aijkl(x)τkl) ∀ τ = (τij) ∈ Sd, a.e. x ∈ Ω.
(b) aijkl = ajikl = aklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) there exists mA > 0 such that:

aijklτijτkl ≥ mA||τ ||2 ∀ τ ∈ Sd, a.e. x ∈ Ω.

(3.2)


(a) F = (fijkl) : Ω× Sd −→ Sd such that:

F(x, τ) = (fijkl(x)τkl) ∀ τ = (τij) ∈ Sd, a.e. x ∈ Ω.
(b) fijkl = fjikl = fklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) there exists mA > 0 such that

fijklτijτkl ≥ mF ||τ ||2 ∀ τ ∈ Sd, a.e. x ∈ Ω.

(3.3)

 (a) E : Ω× Sd −→ Rd such that:
E(x, ε) = (eijk(x)εjk) ∀ε = (εij) ∈ Sd, a.e. x ∈ Ω,

(b) eijk = eikj ∈ L∞(Ω).
(3.4)


(a) B : Ω× Rd → Rd such that:

B(x,E) = (Bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω,
(c) Bij = Bji ∈ L∞(Ω),
(d) there exists mB > 0 such that Bij(x)EiEj ≥ mB‖E‖2

∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(3.5)
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(a) p : Γ3 × R −→ R+.
(b) there exists Lp > 0 such that

|p(x, r1)− p(x, r2)| ≤ Lp|r1 − r2|,
∀r1, r2 ∈ R, a.e. x ∈ Γ3,

(c) x 7−→ p(x, r) is Lebesgue measurable on Γ3,
(d) the mapping x 7−→ p(x, 0) ∈ L2(Γ3).

(3.6)



(a) G : Ω× Sd × Sd −→ Sd
(b) there exists LG > 0 such that

‖G(x, σ1, ε1)− G(x, σ2, ε2)‖ ≤ LG‖σ1 − σ2‖
∀ σ1, σ2, ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(b) for any σ, ε ∈ Sd, x 7−→ G(x, σ, ε) is measurable,
(c) the mapping x 7−→ G(x, 0, 0) belongs to H.

(3.7)

The forces, tractions, volume and surface free charge densities satisfy

f0 ∈W 1,2(0, T ;H), f2 ∈W 1,2(0, T ;L2(Γ2)d), (3.8)

q0 ∈W 1,2(0, T ;L2(Ω)), q2 ∈W 1,2(0, T ;L2(Γb)). (3.9)

The adhesion coefficient γτ and the limit bound εa satisfy the conditions

γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γτ , εa ≥ 0 a.e. on Γ3. (3.10)

Also, we assume that the initial bonding field satisfies the condition

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3, (3.11)

Finally, the coefficient of friction µ is assumed to satisfy

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3. (3.12)

Let now consider the closed subspace of H1 defined by

V = { υ ∈ H1 | υ = 0 on Γ1, υν = 0 on Γ3}. (3.13)

Since meas (Γ1) > 0, the following Korn’s inequality holds

‖ε(υ)‖H ≥ CK‖υ‖H1
∀υ ∈ V, (3.14)

where the proof my be found in [16] (p. 79). Equiping V with the inner product

(u, υ)V = (ε(u), ε(υ))H, (3.15)

and let ‖ · ‖V be the associated norm. We deduce from Korn’s inequality that ‖.‖H1

and ‖.‖V are eauivalente norme on V . Then (V, ‖.‖V ) is a real Hilbert space. Next,
we assume that the initial displacement satisfies the condition

u0 ∈ V. (3.16)

We also introduce the following spaces

W = { ψ ∈ H1(Ω) | ψ = 0 on Γa }, (3.17)

W = { D = (Di) | Di ∈ L2(Ω), div D ∈ L2(Ω)}. (3.18)

Since meas (Γa) > 0 it is well known that W is a real Hilbert space endowed with the
inner product

(ϕ,ψ)W = (∇ϕ,∇ψ)L2(Ω)d , (3.19)
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and the associated norm is ‖ · ‖W . Also we have the following Friedrichs-Poincaré
inequality

‖∇ψ‖L2(Ω)d ≥ CF ‖ψ‖H1(Ω) ∀ψ ∈W, (3.20)

where CF > 0 is a constant which depends only on Ω and Γa. The space W is a real
Hilbert space endowed with the inner product

(D,E)W =

∫
Ω

D ·E dx+

∫
Ω

divD · divE dx,

and the associated norm is ‖·‖W . Moreover, by the Sobolev trace theorem, there exist

two positive constants C0 and C̃0 depending only on Ω,Γ1 and Γ3 such that

‖υ‖L2(Γ3)d ≤ C0‖υ‖V ∀υ ∈ V , ‖ψ‖L2(Γ3) ≤ C̃0‖ψ‖W ∀ψ ∈W. (3.21)

It follows from proprieties of R that there existe a constant CR depending only on
Ω,Γ3 and R such that

‖Rσν‖L2(Γ3) ≤ CR‖σν‖H1 ∀σ ∈ H1. (3.22)

Next, we define the two mappings f : [0, T ] −→ V and q : [0, T ] −→ W , respectively,
by

(f(t), υ)V =

∫
Ω

f0(t) · υ dx+

∫
Γ2

f2(t) · υ da, (3.23)

(q(t), ψ)W =

∫
Ω

q0(t)ψ dx−
∫

Γb

q2(t)ψ da, (3.24)

for all υ ∈ V, ψ ∈W and t ∈ [0, T ]. We note that the definitions of f and q are based
on the Riesz representation theorem. Moreover, it follows from assumptions (3.8)
and (3.9) that

f ∈W 1,2(0, T ;V ), (3.25)

q ∈W 1,2(0, T ;W ). (3.26)

Also, we introduce the set

Q = {β ∈ L∞(0, T ;L2(Γ3)) / 0 ≤ β(t) ≤ 1 ∀ t ∈ [0, T ], a.e. on Γ3}. (3.27)

Now, let us define the adhesion functional jad : L2(Γ3)×V ×V −→ R and the friction
functional jfr : H1 × V −→ R, respectivelly, by

jad(β, u, υ) =
∫
Γ3

γτβ
2Rτ (uτ ) · υτda, (3.28)

jfr(σ, υ) =
∫
Γ3

µp(|Rσν |) · ‖υτ‖da. (3.29)

Using a standard procedure based on Green’s formulas (see (3.1)) we can derive the
following variational formulation of the problem (2.1)–(2.14).
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Problem (PV ). Find a displacement field u : [0, T ]→ V , a stress field σ : Ω× [0, T ]→
H, an electric potential ϕ : [0, T ] → W , and a bonding field β : [0, T ] → L2(Γ3) such
that

σ(t) = Aε(u̇(t)) + Fε(u(t)) +

t∫
0

G(σ(x, s), ε(u(x, s))ds− E∗E(ϕ(t)) (3.30)

(σ(t), ε(ω)− ε(u̇(t))H + jad(β(t), u(t), ω − u̇(t)) (3.31)

+jfr(σ(t), ω)− jfr(σ(t), u̇(t)) ≥ (f(t), ω − u̇(t))V ,

∀ υ ∈ V, ∀t ∈ [0, T ],

(B∇ϕ(t),∇ψ)L2(Ω)d − (Eε(u(t),∇ψ)H = (q(t), ψ)W , (3.32)

∀ψ ∈W, ∀t ∈ [0, T ],

β̇(t) = −(γτβ(t) ‖Rτ (uτ (t))‖2)− εa)+ , a.e. t ∈ (0, T ), (3.33)

u(0) = u0 (3.34)

β(0) = β0. (3.35)

4. Existence and uniqueness result

Theorem 4.1. Assume that (3.2)–(3.12) and (3.16) hold. Then, there exists a constant
µ0 > 0 such that Problem PV has a unique solution (u, σ, ϕ, β) if ‖µ‖L∞(Γ3) < µ0.
Moreover, the solution satisfies

u ∈W 2,2(0, T ;V ), (4.1)

σ ∈W 1,2(0, T ;H1), (4.2)

ϕ ∈W 1,2(0, T ;W ). (4.3)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩Q. (4.4)

A quintuple of functions (u, σ, ϕ, D, β) which satisfies (2.1), (2.2) and (3.30),
(3.35) is called a weak solution of the contact Problem (P). We conclude by Theorem
(4.1) that, under the assumptions (3.2)–(3.12) and (3.16), there exists a unique weak
solution of Problem (P). To precise the regularity of the weak solution we note that the
constitutive relations (2.2), the assumptions (3.4)–(3.5) and the regularity (4.3) im-
plies that D ∈W 1,2(0, T ;L2(Ω)d). Moreover, using again (2.2) combined with (3.32)
and the notation (3.24) and choosing ψ ∈ C∞0 (Ω) we find that div D(t) = q0(t) for all
t ∈ [0, T ]. It follows now from the regularities (3.9) that divD ∈ W 1,2(0, T ;L2(Ω)),
which shows that

D ∈W 1,2(0, T ;W). (4.5)

We conclude that the weak solution (u, σ, ϕ,D, β) of the piezoelectric contact problem
(P) has the regularity (4.1)–(4.5).

The proof of Theorem(4.1) will be carried out in several steps. We assume in
the following that the conditions, (3.2)–(3.12) and (3.16), of Theorem(4.1) hold and
below we denote by ”c” a generic positive constant which is independent of time and
whose value may change from place to place. In the first step, let η ∈ W 1,2(0, T ;V ),
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κ ∈ L2(0, T ;H) and λ ∈ W 1,2(0, T ;H1) be a given functions. We introduce the
function zκ ∈W 1,2(0, T ;H) defined by

zκ(t) =

t∫
0

κ(s)ds ∀t ∈ [0, T ], (4.6)

and we consider the following intermediate problem.

Problem (PV1 ). Find uκηλ : [0, T ]→ V and σκηλ : [0, T ]→ H1 such that

σκηλ(t) = Aε(u̇κηλ(t)) + Fε(uκηλ(t)) + zκ(t) + ε(η(t)). (4.7)

(Aε(u̇κηλ(t)), ε(ω)− ε(u̇κηλ(t))H + (Fε(uκηλ(t)), ε(ω)− ε(u̇κηλ(t))H (4.8)

+(zκ(t), ε(ω)− ε(u̇κηλ(t))H + (ε(η(t)), ε(ω)− ε(u̇κηλ(t))H

+jfr(λ(t), ω)− jfr(λ(t), u̇κηλ(t)) ≥ (f(t), ω − u̇κηλ(t))V

∀ ω ∈ V, ∀t ∈ [0, T ],

uκηλ(0) = u0. (4.9)

Lemma 4.1. Problem PV1 has a unique solution (uκηλ, σκηλ). Moreover, the solution
satisfies

a)uκηλ ∈W 2,2(0, T ;V ),
b)σκηλ ∈W 1,2(0, T ;H1),
c)Divσκηλ + f0 = 0.

(4.10)

Proof. We denote by σ̃κηλ and jλ the elements given by

σ̃κηλ(t) = σκηλ(t)− zκ(t)− ε(η(t)). (4.11)

jλ(ω) = jfr(λ, ω) ∀ω ∈ V. (4.12)

By (3.15) and Riesz’s representation theorem we deduce that there exists an element
fκη ∈W 1,2(0, T ;V ) such that

(fκη(t), υ)V = (f(t)− η(t), υ)V + (zκ(t), ε(υ))H. (4.13)

Since f, η ∈W 1,2(0, T ;V ) and zκ ∈W 1,2(0, T ;H) we deduce that fκη ∈W 1,2(0, T ;V ).
Moreover, using (4.7), (4.8), (4.9), (4.11) and (4.12) leads us to consider the following
variational problem.

Problem (PV2 ). Find uκηλ : [0, T ]→ V and σ̃κηλ : [0, T ]→ H1 such that

σ̃κηλ(t) = Aε(u̇κηλ(t)) + Fε(uκηλ(t)). (4.14)

(σ̃κηλ(t), ε(ω)− ε(u̇κηλ(t))H + jλ(ω)− jλ(u̇κηλ(t))

≥ (fκη(t), ω − u̇κηλ(t))V ∀ ω ∈ V, ∀t ∈ [0, T ],

uκηλ(0) = u0, (4.15)

Note that V is a closed subspace of H1 and the fonctional jλ is convex lower
semicontinuous on V such that j 6= +∞. By a classical results for elliptic varia-
tional inequalities (see e.g. [5], Theorem (4.1) page 348) there exists a unique solution
(uκηλ, σ̃κηλ) for the variational problem PV2 stisfying the regularity condition

uκηλ ∈W 2,2(0, T ;V ), σ̃κηλ ∈W 1,2(0, T ;H1). (4.16)
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Next, kepping in mind (4.7) we put ω = u̇κηλ(t) ± υ where υ ∈ D(Ω)d in (4.8) to
obtain Divσκηλ + f0 = 0.

Finally, we deduce that (uκηλ, σκηλ) is the unique solution of the variational
problem PV1 stisfying condition (4.10), which concludes the proof of Lemma (4.1). �

In the second step we use the displacement field uκηλ obtained in Lemma(4.1)
to obtain the following existence and uniqueness result for the electric potential field.

Lemma 4.2. There exists a unique function ϕκηλ ∈W 1,2(0, T ;W ) such that

(B∇ϕκηλ(t),∇ψ)L2(Ω)d − (Eε(uκηλ(t)),∇ψ)L2(Ω)d = (q(t), ψ)W
∀ψ ∈W, ∀ t ∈ [0 T ] ,

(4.17)

Moreover, if ϕ1 and ϕ2 are the solution of (4.17) for u1, u2 ∈ W 2,2(0, T ;V ), respec-
tivelly, then we have

‖ϕ1(t)− ϕ2(t)‖W ≤ c‖u1(t)− u2(t)‖V ds,
∀ t ∈ [0, T ], a.e. on Γ3

(4.18)

Proof. Let uκηλ ∈W 2,2(0, T ;V )(0, T ;V ) be the function defined in Lemma (4.1). As
in [1], using Riesz’s representation theorem we may define the operator Lκηλ : W −→
W by

(Lκηλ(ϕ(t)), ψ)W = (B∇ϕ(t),∇ψ)L2(Ω)d − (Eε(uηλ(t)),∇ψ)L2(Ω)d

∀ψ ∈W, ∀ t ∈ [0, T ].
(4.19)

It follows from assumptions (3.4) and (3.5) that the operator Lκηλ is stongly monotone
Lipschitz continuous on W . Then, we deduce that there exists a unique element
ϕκηλ(t) ∈W satisfies,

Lκηλ(ϕκηλ(t)) = q(t) ∀t ∈ [0, T ]. (4.20)

Thus, it follows from (4.19) and (4.20) that ϕκηλ(t) ∈ W is the unique solution of
equation (4.17). Let now t1, t2 ∈ [0, T ] and for the sake of simplicity we use the
notations ϕi = ϕκηλ(ti), ui = uκηλ(ti), qi = q(ti) for i = 1, 2. Using (4.17), (3.4) and
(3.5) we find that

‖ϕ1 − ϕ2‖W ≤ c(‖u1 − u2‖V + ‖q1 − q2‖W ),

the previous inequality yields

‖ϕκηλ(t1)− ϕκηλ(t2)‖W ≤ c(‖uκηλ(t1)− uκηλ(t2)‖V + ‖q(t1)− q(t2)‖W ). (4.21)

Since uκηλ ∈W 2,2(0, T ;V ) and q ∈W 1,2(0, T ;W ), it follows that

ϕκηλ ∈W 1,2(0, T ;W ).

Assume now that ϕ1 and ϕ2 are the solution of (4.17) for u1, u2 ∈ W 2,2(0, T ;V ),
respectively. Arguments similar to those used in proof of (4.21) leads to (4.18), which
concludes the proof of Lemma (4.2). �

In the third step, for uκηλ obtained in Lemma (4.1), we solve equation (3.33) for
the adhesion field.
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Problem (Pβκηλ). Find a bonding field βκηλ : [0, T ]→ L2(Γ3) such that

β̇κηλ(t) = −(γτβκηλ(t)‖Rτ (uκηλτ (t))‖2 − εa)+ a.e. t ∈ (0, T ), (4.22)

βκηλ(0) = β0. (4.23)

Lemma 4.3. There exists a unique solution βκηλ to Problem Pβκηλ satisfing βκηλ ∈
W 1,∞(0, T, L2(Γ3)) ∩ Q. Moreover, if β1 and β2 are the solution of (4.22)-(4.23) for
u1, u2 ∈W 2,2(0, T ;V ), respectivelly, then we have

‖β1(t)− β2(t)‖L2(Γ3) ≤ c
t∫

0

‖u1(s)− u2(s)‖V ds,

∀ t ∈ [0, T ], a.e. on Γ3

(4.24)

Proof. The proof of Lemma 4.3 is based on a version of Cauchy-Lipschitz theorem
(see, e.g., [17], page 48), by arguments similar to those used in [7]. �

In the fourth step, for η ∈W 1,2(0, T ;V ), κ ∈ L2(0, T ;H) and λ ∈W 1,2(0, T ;H1)
we denote by uκηλ, ϕκηλ and βκηλ the functions obtained in Lemmas (4.1), (4.2) and
(4.3), respectively. We now define the operator Λκη : L2(0, T ;H1) −→ L2(0, T ;H1)
by

Λκηλ = σκηλ. (4.25)

Lemma 4.4. For all λ ∈ L2(0, T ;H1) the function Λκηλ belongs to W 1,2(0, T ;H1).
Moreover, The operator Λκη has a unique fixed point λκη ∈W 1,2(0, T ;H1).

Proof. Let t1, t2 ∈ [0, T ]. Keeping in mind (3.2), (3.3), (3.15) and using (4.7) written
for t = t1 and t = t2 we find that

‖σκηλ(t1)− σκηλ(t2)‖H ≤ c(‖u̇κηλ(t1)− u̇κηλ(t2)‖V + ‖uκηλ(t1)− uκηλ(t2)‖V
+ ‖zκ(t1)− zκ(t2)‖H + ‖η(t1)− η(t2)‖V ). (4.26)

On the other hand, we have

‖σκηλ(t1)− σκηλ(t2)‖H1 ≤ ‖σκηλ(t1)− σκηλ(t2)‖H
+ ‖Divσκηλ(t1)−Divσκηλ(t2)‖H ,

using (4.10)(c), (4.26) and the previous inequality we obtain

‖σκηλ(t1)− σκηλ(t2)‖H1
≤ c(‖u̇κηλ(t1)− u̇κηλ(t2)‖V + ‖uκηλ(t1)− uκηλ(t2)‖V
+ ‖zκ(t1)− zκ(t2)‖H + ‖η(t1)− η(t2)‖V )

+ ‖f0(t1)− f0(t2)‖H . (4.27)

Now, we get from (4.25) that

‖Λκηλ(t1)− Λκηλ(t2)‖H1
≤ c(‖u̇κηλ(t1)− u̇κηλ(t2)‖V + ‖uκηλ(t1)− uκηλ(t2)‖V
+ ‖zκ(t1)− zκ(t2)‖H + ‖η(t1)− η(t2)‖V )

+ ‖f0(t1)− f0(t2)‖H . (4.28)

Since

u̇κηλ ∈W 1,2(0, T ;V ), uκηλ ∈W 2,2(0, T ;V ), zκ ∈W 1,2(0, T ;H), η ∈W 1,2(0, T ;V )
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and f0 ∈W 1,2(0, T ;H), it follows that

Λκηλ ∈W 1,2(0, T ;H1) (4.29)

Let now λ1, λ2 ∈ L2(0, T ;H1) and let t ∈ [0, T ]. We use the notation ui = uκηλi ,
σi = σκηλi u̇i = u̇κηλi for i = 1, 2. In (4.8) written for λ = λ1, we take ω = u̇2,
and also written for λ = λ2, we take ω = u̇1. After adding the resulting inequalities
and using (3.2), (3.3), (3.6), (3.12), (3.15), (3.21), (3.22), (3.29) with some elementary
calculus we find that

‖u̇1(t)− u̇2(t)‖V ≤
LpC0CR‖µ‖L∞( Γ3)

mA
‖λ1(t)− λ2(t)‖H1

+
CF
mA

t∫
0

‖u̇1(s)− u̇2(s)‖V ds, (4.30)

and, after a Gronwall argument, we obtain

‖u̇1(t)− u̇2(t)‖V ≤
LpC0CR‖µ‖L∞(Γ3)

mA
‖λ1(t)− λ2(t)‖H1

. (4.31)

Next, from (4.10)(c) we have Divσ1(t) = Divσ2(t). Moreover, using (4.7), (3.2), (3.3),
(3.15) and (3.21) we obtain

‖σ1(t)− σ2(t)‖H1 = ‖σ1(t)− σ2(t)‖H ≤ c(‖u̇1(t)− u̇2(t‖V
+‖u1(t)− u2(t)‖V ).

(4.32)

Now, using using (4.32) and Young’s inequality we obtain

‖σ1(t)− σ2(t)‖2H1
≤ c(‖u̇1(t)− u̇2(t)‖2V + ‖u1(t)− u2(t)‖2V ),

where, we deduce by using (4.25) that

‖Λκηλ1(t)− Λκηλ2(t)‖2H1
≤ c(‖u̇1(t)− u̇2(t)‖2V (4.33)

+

t∫
0

‖u̇1(s)− u̇2(s)‖2V ds).

We combine now (4.31) and (4.33) to obtain

‖Λκηλ1(t)− Λκηλ2(t)‖2H1
≤ c(‖λ1(t)− λ2(t)‖2H1

+

t∫
0

‖λ1(s)− λ2(s)‖2H1
ds),

and, reiterating this inequality m times, yields

‖Λmκηλ1 − Λmκηλ2‖2L2(0,T ;H1) ≤
cm(m+ T )m

m!
‖λ1 − λ2‖2L2(0,T ;H1),

which implies that for m sufficiently large, Λmκη is contraction on the Banach space

L2(0, T ;H1). Therefore, there exists a unique λκη ∈ L2(0, T ;H1) such that Λmκηλκη =
λκη where we deduce that λκη is the unique fixed point of Λκη. Moreover, equality
(4.25) implies that λκη ∈ W 1,2(0, T ;H1), which concludes the proof of Lemma (4.4).

�
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Now, let λκη the fixed point of the operator Λκη. We use Riesz ’s representation
theorem to define the operator Λκ : L2(0, T ;V ) −→ L2(0, T ;V ) by

(Λκη(t), υ)V = j(βκηλκη (t), uκηλκη (t), υ) + (E∗E(ϕκηλκη (t)), ε(υ)), (4.34)

for all υ ∈ V and t ∈ [0, T ]. We have the following result.

Lemma 4.5. For all η ∈ L2(0, T ;V ) the function Λκη belongs to W 1,2(0, T ;V ). More-
over, there exists a constant µ0 > 0 such that the operator Λκ has a unique fixed point
ηκ ∈W 1,2(0, T ;V ) if ‖µ‖L∞( Γ3) ≤ µ0.

Proof. Let η ∈ L2(0, T ;V ) and let t1, t2 ∈ [0, T ]. Using (4.34), (3.28), (3.21) and
keeping in mind the inequality 0 ≤ βκηλκη (t) ≤ 1 and the properies of the operators
Rν , Rτ and E∗ we find that

‖Λκη(t1)− Λκη(t2)‖V ≤ c(‖uκηλκη (t1)− uκηλκη (t2)‖V
+ ‖βκηλκη (t1)− βκηλκη (t2)‖L2(Γ3)

+ ‖ϕκηλκη (t1)− ϕκηλκη (t2)‖W ). (4.35)

Since

uκηλκη ∈W 2,2(0, T ;V ), βκηλκη ∈W 1,∞(0, T, L2(Γ3)) ∩Q

and ϕκηλκη ∈W 1,2(0, T ;W ) we deduce that Λκη ∈W 1,2(0, T ;V ).

Let now η1, η2 ∈ L2(0, T ;V ) and let ui = uκηiλκηi , u̇i = u̇κηiλκηi , βi = βκηiλκηi ,
ϕi = ϕκηiλκηi , σi = σκηiλκηi for i = 1, 2. Arguments similar to those used in the proof

of (4.35) lead to

‖Λκη1(t)− Λκη2(t)‖V ≤ c(‖u1(t)− u2(t)‖V
+ ‖β1(t− β2(t)‖L2(Γ3) + ‖ϕ1(t)− ϕ2(t)‖W ). (4.36)

We combine now (4.18), (4.24) and (4.36) to obtain

‖Λκη1(t)− Λκη2(t)‖V ≤ c(‖u1(t)− u2(t)‖V

+

t∫
0

‖u1(s)− u2(s)‖V ds). (4.37)

Moreover, since u1(0) = u2(0) = u0 we have

‖u1(t)− u2(t)‖V ≤ c
t∫

0

‖u̇1(s)− u̇2(s)‖V ds. (4.38)

From (4.37) and (4.38) we find

‖Λκη1(t)− Λκη2(t)‖V ≤ c
t∫

0

‖u̇1(s)− u̇2(s)‖V ds ∀ t ∈ [0 T ] . (4.39)
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On the other hand, keeping in mind that λκηi = σi, using (4.8) and by arguments
similar to those used in (4.30) we find that

mA‖u̇1(t)− u̇2(t)‖V ≤ LpC0CR‖µ‖L∞( Γ3)‖σ1(t)− σ2(t)‖H + ‖η1(t)− η2(t)‖V

+ CF

t∫
0

‖u̇1(s)− u̇2(s)‖V ds,

and, after a Gronwall argument, we obtain

mA‖u̇1(t)− u̇2(t)‖V ≤ LpC0CR‖µ‖L∞( Γ3)‖σ1(t)− σ2(t)‖H,
+ ‖η1(t)− η2(t)‖V . (4.40)

Now, by (4.10)(c) it follows that Divσ1(t) = Divσ2(t). Then, from (4.7), (3.2), (3.3)
and (3.15) we find that

‖σ1(t)− σ2(t)‖H1
= ‖σ1(t)− σ2(t)‖H ≤ CA‖u̇1(t)− u̇2(t)‖V
+ CF‖u1(t)− u2(t)‖V + ‖η1(t)− η2(t)‖V , (4.41)

where we deduce that

‖σ1(t)− σ2(t)‖H1 = ‖σ1(t)− σ2(t)‖H ≤ CA‖u̇1(t)− u̇2(t)‖V

+ ‖η1(t)− η2(t)‖V + CF

t∫
0

‖u̇1(s)− u̇2(s)‖V ds, (4.42)

We combine now (4.40) and (4.42) to obtain

mA‖u̇1(t)− u̇2(t)‖V ≤ CALpC0CR‖µ‖L∞(Γ3)‖u̇1(t)− u̇2(t)‖V
+ (LpC0CR‖µ‖L∞( Γ3) + 1)‖η1(t)− η2(t)‖V

+ LpC0CR‖µ‖L∞( Γ3)CF

t∫
0

‖u̇1(s)− u̇2(s)‖V ds. (4.43)

Now, we take ‖µ‖L∞( Γ3) ≤ µ0 such that

µ0 =
mA

CALpC0CR
. (4.44)

Using (4.43) and after a Gronwall argument we find that

(mA − CALpC0CR‖µ‖L∞( Γ3))‖u̇1(t)− u̇2(t)‖V
≤ (LpC0CR‖µ‖L∞( Γ3) + 1)‖η1(t)− η2(t)‖V ,

where, we deduce that for ‖µ‖L∞( Γ3) ≤ µ0 we have

‖u̇1(t)− u̇2(t)‖V ≤ c‖η1(t)− η2(t)‖V . (4.45)

We combine now (4.45) and (4.39) to see that

‖Λκη1(t)− Λκη2(t)‖V ≤ c
t∫

0

‖η1(s)− η2(s)‖V ds ∀ t ∈ [0, T ] (4.46)
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and by Cauchy-Schwartz inequality we deduce that

‖Λκη1(t)− Λκη2(t)‖2V ≤ c
t∫

0

‖η1(s)− η2(s)‖2V ds ∀ t ∈ [0, T ] (4.47)

Reiterating this inequality m times yields

‖Λmκ η1 − Λmκ η2‖2L2(0,T ;V ) ≤
cmTm

m!
‖η1 − η2‖2L2(0,T ;V ).

which implies that, for ‖µ‖L∞( Γ3) ≤ µ0 and m sufficiently large, a power Λmκ of Λκ
is a contraction in the Banach space L2(0, T ;V ). Thus, there exists a unique element
ηκ ∈ L2(0, T ;V ) such that Λmκ ηκ = ηκ and ηκ is also the unique fixed point of Λκ,
i.e Λκηκ = ηκ. The regularity ηκ ∈ W 1,2(0, T ;V ) follows from the regularity Λκηκ ∈
W 1,2(0, T ;V ), which concludes the proof of Lemma (4.5). �

Next, let ‖µ‖L∞( Γ3) ≤ µ0 and λκη, ηκ the fixed points of operators Λκη, Λκ
respectivelly. We put uk = uκηκλκη , σk = σκηκλκη , ϕk = ϕκηκλκη and βk = βκηκλκη for
the solutions obtened in lemmas (4.1), (4.2), (4.3). Moreover, we define the operator
Λ : L2(0, T ;H) −→ L2(0, T ;H) by

Λκ = G(σκ, ε(uκ)), (4.48)

such that

σκ(t) = Aε(u̇κ(t)) + Fε(uκ(t)) + zκ(t) + E∗E(ϕκ(t)). (4.49)

(σκ(t), ε(ω)− ε(u̇κ(t))H + jad(βκ(t), uκ(t), ω − u̇κ(t)) (4.50)

+jfr(σκ(t), ω)− jfr(σκ(t), u̇κ(t)) ≥ (fκ(t), ω − u̇κ(t))V

∀ ω ∈ V, ∀t ∈ [0, T ].

(fκ(t), υ)V = (f(t), υ)V + (zκ(t), ε(υ))H. (4.51)

Lemma 4.6. The function Λκ belongs to W 1,2(0, T ;H) and the operator Λ has a unique
fixed point κ∗ ∈ L2(0, T ;H).

Proof. Let κ ∈ L2(0, T ;H) and let t1, t2 ∈ [0, T ]. Using (4.48), (3.7) and (3.15) we
find that

‖Λκ(t1)− Λκ(t2)‖H ≤ LG(‖σκ(t1)− σκ(t2)‖H + ‖uκ(t1)− uκ(t2)‖V ).

Since uκ ∈W 2,2(0, T ;V ), σκ ∈W 1,2(0, T ;H1) we deduce that Λκ ∈W 1,2(0, T ;H).

Next, let κ1, κ2 ∈ L2(0, T ;H). For the sake of simplicity, we put ui = uκi ,
σi = σκi , βi = βκi , ϕi = ϕκi and zi = zκi . Usin again (4.48), (3.7) and (3.15) we
obtain

‖Λκ1(t)− Λκ2(t)‖H ≤ LG(‖σ1(t)− σ2(t)‖H + ‖u1(t)− u2(t)‖V ). (4.52)
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On the other hand, by arguments similar to those used in (4.30) the inequality (4.50)
leads to

(σ1(t)− σ2(t), ε(u̇1)− ε(u̇2)H ≤
+jad(β1, u1, u̇2 − u̇1) + jad(β1, u1, u̇2 − u̇1)
(E∗E(ϕ1(t))− E∗E(ϕ2(t)), ε(u̇1)− ε(u̇2))H
+jfr(σ1(t), u̇2(t))− jfr(σ1(t), u̇1(t))
+jfr(σ2(t), u̇1(t))− jfr(σ2(t), u̇2(t)).

(4.53)

Using (4.49), (3.2), (3.3), (3.6), (3.21), (3.22), (3.12), (3.28), (3.29) and the previous
inequality and after some algebric manipulation we find that

mA‖u̇1(t)− u̇2(t)‖2V ≤ (c‖u1(t)− u2(t)‖V + ‖z1(t)− z2(t)‖V
+ c‖ϕ1(t)− ϕ2(t)‖W + c‖β1(t)− β2(t)‖L2(Γ3)

+ LpC0CR‖µ‖L∞( Γ3)‖σ1(t)− σ2(t)‖H)‖u̇1(t)− u̇2(t)‖V ,

where we deduce that

mA‖u̇1(t)− u̇2(t)‖V ≤ c‖u1(t)− u2(t)‖V + ‖z1(t)− z2(t)‖H
+ c‖ϕ1(t)− ϕ2(t)‖W + c‖β1(t)− β2(t)‖L2(Γ3)

+ LpC0CR‖µ‖L∞( Γ3)‖σ1(t)− σ2(t)‖H.

We combine now (4.18), (4.24) and the previous inequality to obtain

mA‖u̇1(t)− u̇2(t)‖V ≤ LpC0CR‖µ‖L∞( Γ3)‖σ1(t)− σ2(t)‖H
+ ‖z1(t)− z2(t)‖H + c‖u1(t)− u2(t)‖V

+

t∫
0

‖u1(s)− u2(s)‖V ds. (4.54)

Moreover, since u1(0) = u2(0) = u0 we have

‖u1(t)− u2(t)‖V ≤
t∫

0

‖u̇1(s)− u̇2(s)‖V ds. (4.55)

From (4.54) and (4.55) we find

mA‖u̇1(t)− u̇2(t)‖V ≤ LpC0CR‖µ‖L∞( Γ3)‖σ1(t)− σ2(t)‖H

+ ‖z1(t)− z2(t)‖H + c

t∫
0

‖u̇1(s)− u̇2(s)‖V ds,

and after a Gronwall argument we find that

mA‖u̇1(t)− u̇2(t)‖V ≤ ‖z1(t)− z2(t)‖H (4.56)

+ LpC0CR‖µ‖L∞(Γ3)‖σ1(t)− σ2(t)‖H.
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On the other hand, using (4.49), (3.2), (3.3) we find that

‖σ1(t)− σ2(t)‖H ≤ CA‖u̇1(t)− u̇2(t)‖V + CF‖u1(t)− u2(t)‖V (4.57)

+ ‖z1(t)− z2(t)‖V + c‖ϕ1(t)− ϕ2(t)‖W ,

where, we deduce from (4.18) that

‖σ1(t)− σ2(t)‖H ≤ ‖z1(t)− z2(t)‖H (4.58)

+CA‖u̇1(t)− u̇2(t)‖V + CF‖u1(t)− u2(t)‖V
Combining (4.56) and (4.58) we obtain

mA‖u̇1(t)− u̇2(t)‖V ≤ ‖z1(t)− z2(t)‖H
+LpC0CR‖µ‖L∞(Γ3)CA‖u̇1(t)− u̇2(t)‖V

+LpC0CR‖µ‖L∞(Γ3)‖z1(t)− z2(t)‖H
+LpC0CR‖µ‖L∞(Γ3)CF‖u1(t)− u2(t)‖V .

It follows now from the previous inequality that

mA‖u̇1(t)− u̇2(t)‖V ≤ (1 + LpC0CR‖µ‖L∞(Γ3))‖z1(t)− z2(t)‖H
+ CALpC0CR‖µ‖L∞(Γ3)‖u̇1(t)− u̇2(t)‖V

+ LpC0CR‖µ‖L∞(Γ3)CF

t∫
0

‖u̇1(s)− u̇2(s)‖V ds,

and after a Gronwall argument we find that

mA‖u̇1(t)− u̇2(t)‖V ≤ (1 + LpC0CR‖µ‖L∞(Γ3))‖z1(t)− z2(t)‖H
+ CALpC0CR‖µ‖L∞(Γ3)‖u̇1(t)− u̇2(t)‖V .

Since, ‖µ‖L∞( Γ3) ≤ µ0 the previous inequality leads to

‖u̇1(t)− u̇2(t)‖V ≤ c‖z1(t)− z2(t)‖H (4.59)

Moreover, since u1(0) = u2(0) = u0 we have

‖u1(t)− u2(t)‖V ≤
t∫

0

‖u̇1(s)− u̇2(s)‖V ds ≤ c
t∫

0

‖z1(s)− z2(s)‖Hds. (4.60)

Combining, (4.58), (4.59) and (4.60) we find

‖Λκ1(t)− Λκ2(t)‖H ≤ c‖z1(t)− z2(t)‖H + c

t∫
0

‖z1(s)− z2(s)‖Hds. (4.61)

Now, from (4.6) we have z1(0) = z2(0) = 0. Then,

‖z1(t)− z2(t)‖V ≤
t∫

0

‖ż1(s)− ż2(s)‖Hds. (4.62)
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Therefore, combining (4.61) and (4.62) we obtain

‖Λκ1(t)− Λκ2(t)‖H ≤ c
t∫

0

‖ż1(s)− ż2(s)‖Hds. (4.63)

Finally, using (4.6) and Cauchy-Schwartz inequality we find

‖Λκ1(t)− Λκ2(t)‖2H ≤ c
t∫

0

‖κ1(s)− κ2(s)‖2Hds.

Reiterating this inequality m times yields

‖Λmκ1 − Λmκ2‖2L2(0,T ;H) ≤
cmTm

m!
‖κ1 − κ2‖2L2(0,T ;H).

which implies that, for m sufficiently large, a power Λm of Λ is a contraction in the
Banach space L2(0, T ;H). Thus, there exists a unique element κ∗ ∈ L2(0, T ;H) such
that Λmκ∗ = κ∗ and κ∗ is also the unique fixed point of Λ, i.e Λκ∗ = κ∗, which
concludes the proof of Lemma (4.6). �

Now, we have all the ingredients necessary to prove Theorem 4.1.
Existence: Let κ∗, ηκ, λκη be the fixed points of operators Λ, Λκ, Λκη, respectively, and
(u, σ) = (uκηλ, σκηλ) the solution of the variational problem PV1 with κ = κ∗, η = ηκ,
λ = λκη. We also denote by ϕ = ϕκηλ and β = βκηλ the solution of problems (4.17)
and Pβκηλ , respectively, with κ = κ∗, η = ηκ, λ = λκη. Clearly, it follows from (4.6),
(4.25), (4.34) and (4.48) that (3.30)-(3.35) holds. We conclude that (u, σ, ϕ, D, β) is
a solution of Problem PV and it satisfies (4.1)-(4.5).
Uniqueness: The uniqueness of the solution follows from the uniqueness of the fixed
points of Λ, Λκ, Λκη and from the uniqueness part of Lemmas (4.1), (4.2) and (4.3).
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Mathematical modelling of free convection in
a square cavity filled with a bidisperse porous
medium for large values of Rayleigh number

Cornelia Revnic and Flavius Pătrulescu

Abstract. A free convection problem for bidisperse porous media is considered.
The numerical solutions are obtained using an algorithm based on an nonuniform
grid. Results for some values of the governing parameters when Rayleigh number
is equal to 104 are provided.
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Keywords: Numerical results, free convection, square cavity, bidisperse porous
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1. Introduction

Fluid flow and heat transfer in porous media represented the subject of intensive
research in the last decades. A comprehensive presentation of the volume of work in
this domain can be found in [14]. In the past several years, there has been much
interest in double porosity materials, the so called bidisperse porous media (BDPM).
The literature in the field is extensive, see for instance [20] and references therein. A
very good description of the mathematical models concerning heat transfer and fluid
flow in BDPM can be found in the excellent chapter [15] in the book [10].

A new mathematical model which describes the flow and heat transfer in a
square cavity filled with BDPM was considered in [18]. It represents an extension of
the classical problem of steady Darcy free convection for a monodisperse (regular)
porous medium by following the model proposed in [16] and [17]. The basic equations
were transformed in terms of dimensionless stream functions and temperatures and
an algorithm based on finite difference method was provided to obtain the numerical
solutions.

Received 08 September 2020; Accepted 14 December 2020.
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The current paper represents a continuation of [18] and we use a different ap-
proach to obtain the numerical results. More exactly, we consider, as in [19], a nonuni-
form grid to a better capture of the phenomena near the boundaries. The novelty
consists in the fact that, in contrast with [18], we provide numerical solutions for
large values of Rayleigh number.

The rest of the paper is structured as follows. The basic equations and prelim-
inary materials are presented in Section 2. In Section 3 we describe the numerical
algorithm and give some test results. Finally, in Section 4 we provide and discuss our
principal results in the form of tables and figures.

2. Basic equations

A porous medium is a material consisting of a solid matrix with a interconnected
void saturated by a fluid. A bidisperse porous medium, as it is mentioned in [16]
or [17], is composed of clusters of large particles that are agglomerations of small
particles. Examples of BDPM are beds of porous and fractured rocks, coal deposits or
bidisperse catalysts. There exists a wide range of applications in geophysics, medicine
or food industry, see [10], [14], [22] or [20]. Fluid flow and heat transfer in BDPM were
studied for various configurations as vertical and wavy plates, channels or cylindrical
geometries. The problem of steady Darcy free convection in an enclosure was analyzed
in [18]. More exactly, the geometry of the model consists in a square cavity with a given
size filled with BDPM, see Figure 1a. The horizontal walls are adiabatic whereas the
vertical walls are kept at constant but different temperatures. The physical problem
is represented mathematically by the following set of partial differential equations
introduced in [18] along with the corresponding boundary conditions illustrated in
Figure 1a

∂uf
∂x

+
∂vf
∂y

= 0, (2.1)

∂up
∂x

+
∂vp
∂y

= 0, (2.2)

∂p

∂x
= − µ

Kf
uf − ξ(uf − up), (2.3)

∂p

∂x
= − µ

Kp
up − ξ(up − uf ), (2.4)

∂p

∂y
= − µ

Kf
vf − ξ(vf − vp) + ρgβ̂(TF − T0), (2.5)

∂p

∂y
= − µ

Kp
vp − ξ(vp − vf ) + ρgβ̂(TF − T0), (2.6)
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φ(ρc)f

(
uf
∂Tf
∂x

+ vf
∂Tf
∂y

)
= φkf∇2Tf + h(Tp − Tf ), (2.7)

(1− φ)(ρc)p

(
up
∂Tp
∂x

+ vp
∂Tp
∂y

)
= (1− φ)kp∇2Tp + h(Tf − Tp), (2.8)

where

TF =
φTf + (1− φ)εTp
φ+ (1− ε)φ

, T0 =
Th + Tc

2
.

Here the subscripts f and p are related to the macrophase and to the microphase,
respectively. Moreover, (x, y) represent the Cartesian coordinates, (u, v) are the fil-
tration velocity components, T is the temperature, p is the pressure, K is the per-
meability, g is the magnitude of the acceleration due to gravity, c is the specific heat
at constant pressure, h is the inter-phase heat transfer coefficient, φ is the volume
fraction of the f -phase, µ is the dynamic viscosity, ρ is the fluid density, ξ is the co-
efficient for momentum transfer between the two phases, ε is the porosity within the

p-phase and β̂ is the volumetric thermal expansion. In order to obtain a dimensionless
form of (2.1)-(2.8) the following variables are considered

p =
µkf

(ρc)fKf
P, (uf , vf ) =

φkf
(ρc)fL

(Uf , Vf ), (up, vp) =
(1− φ)kp

(ρc)pL
(Up, Vp)

(x, y) = L(X,Y ), Tf = (Th − Tc)θf + T0, Tp = (Th − Tc)θp + T0.

The previous dimensionless variables are substituted in (2.1)-(2.8). Proceeding as in
[18], we introduce the stream functions ψf and ψp given by

(Uf , Up) =
∂

∂Y
(ψf , ψp), (Vf , Vp) = − ∂

∂X
(ψf , ψp)

and eliminate the pressure P . The governing equations for continuity, momentum and
energy are transformed in the following dimensionless nonlinear system

−(1 + σf )∇2ψf + βσf∇2ψp = Ra

(
τ
∂θf
∂X

+ (1− τ)
∂θp
∂X

)
(2.9)

σf∇2ψf − β
(
σf +

1

Kr

)
∇2ψp = Ra

(
τ
∂θf
∂X

+ (1− τ)
∂θp
∂X

)
(2.10)

∇2θf = φ

(
∂ψf
∂Y

∂θf
∂X
− ∂ψf
∂X

∂θf
∂Y

)
+H(θf − θp) (2.11)

∇2θp = (1− φ)

(
∂ψp
∂Y

∂θp
∂X
− ∂ψp
∂X

∂θp
∂Y

)
+Hγ(θp − θf ), (2.12)

where Ra denotes the Rayleigh number, σf represents the inter-phase momentum
transfer parameter, Kr is the permeability ratio, H is the inter-phase heat transfer
parameter, γ is the modified thermal conductivity ratio, β denotes the modified ther-
mal diffusivity ratio and τ incorporates the porosity of micropores and are defined as
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follows

Ra =
ρgβ̂(Th − Tc)KfL(ρc)f

φµkf
, σf =

ξKf

µ
, β =

(1− φ)kp(ρc)f
φkf (ρc)p

Kr =
Kp

Kf
, H =

hL2

φkf
, γ =

φkf
(1− φ)kp

, τ =
φ

φ+ (1− φ)ε
.

More details about their significance and their values can be found in [8]. The in-
dependent variables (X,Y ) belong to [0, 1] × [0, 1] and the corresponding boundary
conditions are given by

ψf = ψp = 0, θf = θp = 1
2 at X = 0

ψf = ψp = 0, θf = θp = − 1
2 at X = 1

ψf = ψp =
∂θf
∂Y =

∂θp
∂Y = 0 at Y ∈ {0, 1}.

(2.13)

In the rest of the paper we use the following values, considered in [16] or [17], φ = 0.5,
τ = 0.625, H ∈ {10−2, 102}, Kr ∈ {10−3, 10−1}, σf ∈ {10−1, 1}, Ra ∈ {102, 103, 104},
β ∈ {1, 10} and γ ∈ {10−2, 1, 102}.

In addition, physical quantities of interest are the mean Nusselt numbers at the
heated wall, given in the following dimensionless form

Nuf = −
∫ 1

0

(∂θf
∂X

)
X=0

dY, Nup = −
∫ 1

0

(∂θp
∂X

)
X=0

dY. (2.14)

Moreover, an overall Nusselt number can be obtained

Nuall =
γ

1 + γ
Nuf +

γ

1 + γ
Nup. (2.15)

3. Numerical algorithm

A central-finite difference scheme was used in [18] to obtain the numerical solu-
tions of equations (2.9)-(2.12) subject to boundary conditions (2.13). Moreover, the
nonlinear system of discretized equations was solved using a Gauss-Seidel iteration
technique. The following convergence criterion was used to check the convergence of
the method

‖λnew − λold‖/‖λnew‖ ≤ δ, (3.1)

where δ is a prescribed error, λ represents the unknowns ψ or θ and ‖ · ‖ is a given
norm.

As we mentioned in Section 1, we change the algorithm proposed in [18]. More
exactly, we consider a variable grid near the walls to determine the numerical solutions.
The step size varies as a quadratic function. In order to illustrate the grid structure,
we represent in Figure 1b the mesh of size 28× 28. The smallest step size is near the
boundaries, while the largest step size is in the middle of the domain. To define this
grid we consider the variable grid layer thickness (v.g.l.t.), b, and the number of nodes
in v.g.l.t., nb. This allows us to compute the first step in v.g.l.t., hb, and the total
number of nodes in one direction, n. For all results presented in this paper, choosing
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δ = 10−9 in (3.1) proves to be sufficiently small such that any smaller value produces
similar results. The numerical experiments were performed on the computer cluster
Kotys (see [4]).

BDPM

(a) The physical model (b) The mesh with the size 28 × 28

In the rest of this section we provide some results related to the grid pattern
and the validation of the algorithm. To determine the grid structure, we performed
numerical simulations for various values of v.g.l.t., b, and different number of nodes in
v.g.l.t., nb. However, in order to save the space we restrict to present only the results
from Table 1. This analysis help us to conclude that the suitable grid for the cases
Ra = 102 or Ra = 103 can be based on 102 × 102 points, i.e. b = 0.2 and nb = 30.
Moreover, for the case Ra = 104 all the results are obtained using 119 × 119 points,
i.e. b = 0.2 and nb = 35.

Table 1. Results for different grids at Ra = 104 when σf = 1,Kr =
10−1, β = 1, H = 10−2, γ = 10−2

b nb hb n Nuf Nup max |ψf | max |ψp|
0.2 35 0.00017 119 24.946 9.073 91.586 22.896
0.2 40 0.00013 137 24.956 9.078 91.618 22.904
0.3 40 0.00019 104 24.930 9.069 91.571 22.892
0.3 45 0.00015 117 24.947 9.074 91.603 22.900
0.4 45 0.00020 99 24.926 9.068 91.567 22.891
0.4 50 0.00016 110 24.942 9.073 91.597 22.899

Finally, Table 2 contains a comparison between the computed values of Nusselt
number with the results from the open literature for different values of Rayleigh
number. As it can be seen, the obtained results show a good agreement with the
results reported by the mentioned authors. Therefore, we are confident that the results
reported in the present paper are accurate.

At the end of this section, we mention that more details about numerical methods
for partial differential equations can be found in [7] or [21]. Moreover, numerical results
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Table 2. Comparison of Nusselt number for φ = τ = β = 1,
Kr = 10−4 and σf = H = γ = 0

Authors
Ra

10 102 103 104

[1] 1.079 3.160 14.060 48.330
[2] − 3.113 − 48.900
[3] − 4.200 15.800 50.800
[9] − 3.141 13.448 42.583
[11] − 3.118 13.637 48.117
[13] 1.065 2.801 − −
[18] − − 13.664 −
[19] 1.078 3.108 13.613 48.208
[23] − 3.097 12.960 51.000

Present 1.079 3.108 13.603 48.370

based on spline functions for the problem of natural convection in a square cavity filled
with a fluid-saturated porous medium are provided in [12].

4. Results and discussion

In this section we present numerical results for the streamlines, isotherms and
mean Nusselt numbers for the values of the parameters introduced in Section 2. More
exactly, we consider constant some parameters and check the effect of the other ones.
Tacking into account the fact that numerical results for Ra ∈ {102, 103} were analyzed
in [18], we restrict our attention to the case Ra = 104. Concerning the parameters
which describe the porosities all results are given for the following values φ = 0.5
and τ = 0.625. Table 3 contains the values of the mean Nusselt numbers Nuf and
Nup defined in (2.14) and Table 4 provides the maximum absolute value of stream
functions. Figs. 2–6 show the streamlines and their maximum absolute value (up)
and isotherms (bottom) for Ra = 104, whereas Figs. 7–8 depict results for Ra ∈
{102, 103, 104}.

We analyze these results in the following. First of all, we can observe that for all
values of governing parameters when Ra = 104 the flow is unicellular. Moreover, the
results given in Table 4 show that the flow in p-phase is much slower than the flow in
f -phase. From the position of isotherms in f -phase, which are not parallel with the
vertical walls, we conclude that there exists a predominant convective heat transfer
in macropahse.

For small values of H and γ, i.e. an intense thermal non-equilibrium effect is
considered, the isotherms in p-phase are almost parallel with the vertical walls of
the cavity, see Figure 2 or Figure 8. We deduce that in this case the heat transfer
is mainly conductive in microphase. The difference between the streamlines for the
two phases seems to be negligible, see Figure 2 or Figure 7. However, there exists
an important difference between maximum absolute values of stream functions. For
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large values of H and γ (thermal equilibrium) we observe an increasing in p-phase
of convection effect, see the isotherms in Figs. 3–4. Moreover, for H = γ = 102 the
isotherms have a very similar form, see Figure 6, the two phases being in thermal
equilibrium. In addition, we observe that a thermal boundary layer near the vertical
boundaries is presented. The flow in both phases is stratified and the dimension of
central cells increases with the increase of H and γ. Also, the position of streamlines
in Figs. 3–6 shows the existence of a boundary layer type flow.

Using the results in Table 3 we deduce that the values of Nusselt numbers in-
crease by increasing Kr from 10−3 to 10−1. Moreover, the results provided in Table
4 show that the maximum absolute value of stream function decreases in f -phase
and increases in p-phase. The same behavior can be observed comparing Figure 2
and Figure 5 and it is in agreement with the physical situation. More exactly, Kr

represents the ratio of micropermeability to macropermeability and small values of it
suggest that the flow and convective heat transfer are reduced in microphase.

The increase of inter-phase momentum transfer parameter σf from 10−1 to 1
implies that the maximum absolute value of stream function decreases in macrophase
and increases in microphase, see Table 4 or Figs. 3–4. This behavior is not surprising
since σf is a measure of the way in which momentum is transferred between the two
phases. An analogue situation is encountered for the heat flux, see Table 3, excepting
the case H = γ = 102 when a strong thermal equilibrium exists and the values of
both Nusselt numbers decrease.

Finally, we analyze the influence of Rayleigh number, Ra, on the flow and Nusselt
numbers. We observe that the Nusslet numbers and the maximum of stream functions
increase with the increasing of Ra, see Table 5 or Figure 7. An identic behavior is
observed for the regular case, see Table 2. As we mentioned above, for large values
of Rayleigh number we have convective heat transfer in macrophase, see Figs. 2–6
and Figure 8. Moreover, the conduction dominates the heat transfer in p-phase for
Ra = 102 or Ra = 103, see Figure 8. The convection effect influences the heat transfer
in microphase for Ra = 104 and it is more important when H and γ increase, i.e. the
heat transfer between the phases occurs more rapidly.

Finally, we point out that the subject of a further paper can be represented by
the study of this problem in triangular cavities with curved sides. To this end, we can
use interpolation procedures introduced in [5] or [6].



898 Cornelia Revnic and Flavius Pătrulescu

Table 3. Nusselt numbers

γ H Kr σf
β = 1 β = 10

Nuf Nup Nuf Nup

10−2

10−2
10−3 0.1 29.374 1.002 29.397 1.000

1 21.586 1.005 21.604 1.000

10−1 0.1 31.673 6.468 29.610 1.255
1 24.940 9.073 23.297 1.444

102
10−3 0.1 26.639 1.082 26.493 1.077

1 18.691 1.080 18.456 1.069

10−1 0.1 32.852 6.468 28.253 1.355
1 25.971 9.143 22.206 1.583

102

10−2
10−3 0.1 29.476 1.088 29.497 1.085

1 21.659 1.088 21.675 1.081

10−1 0.1 31.673 6.437 29.694 1.320
1 24.940 9.046 23.351 1.498

102
10−3 0.1 32.184 18.654 32.184 18.645

1 23.149 15.264 23.149 15.250

10−1 0.1 32.359 19.876 32.371 18.812
1 24.885 17.754 24.918 16.127

Table 4. Maximum absolute value of streamlines

γ H Kr σf
β = 1 β = 10

max |ψf | max |ψp| max |ψf | max |ψp|

10−2

10−2
10−3 0.1 225.31 0.27 224.38 0.02

1 123.20 0.36 122.25 0.03

10−1 0.1 140.39 16.51 220.36 2.59
1 91.58 22.89 134.56 3.36

102
10−3 0.1 249.03 0.29 250.48 0.03

1 151.01 0.45 152.76 0.04

10−1 0.1 142.66 16.78 225.99 2.65
1 96.61 24.15 143.93 3.59

102

10−2
10−3 0.1 219.46 0.26 218.66 0.02

1 119.92 0.35 119.07 0.03

10−1 0.1 139.89 16.45 215.70 2.53
1 91.43 22.85 131.99 3.29

102
10−3 0.1 97.47 0.11 97.47 0.01

1 70.23 0.21 70.24 0.02

10−1 0.1 97.84 11.51 98.02 1.15
1 75.23 18.80 75.55 1.88

Table 5. Variation of results with Ra when σf = 1, Kr = 10−1,
β = 1, H = 10−2, γ = 102

Ra Nuf Nup max |ψf | max |ψp|
102 1.485 1.049 3.80 0.95

103 6.464 2.085 21.45 5.36

104 24.940 9.046 91.43 22.85
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Figure 2. Streamlines and isotherms for Kr = 10−3, σf = 1, β = 1,
H = 10−2, γ = 1: f -phase (left), p-phase (right)
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Figure 3. Streamlines and isotherms for Kr = 10−3, σf = 1, β = 1,
H = 102, γ = 1: f -phase (left), p-phase (right)
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Figure 4. Streamlines and isotherms for Kr = 10−3, σf = 10−1,
β = 1, H = 102, γ = 1: f -phase (left), p-phase (right)
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Figure 5. Streamlines and isotherms for Kr = 10−1, σf = 1, β = 1,
H = 10−2, γ = 1: f -phase (left), p-phase (right)
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Figure 6. Streamlines and isotherms for Kr = 10−3, σf = 10−1,
β = 1, H = 102, γ = 102: f -phase (left), p-phase (right)
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(a) Ra = 103
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(b) Ra = 103
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(c) Ra = 104

Figure 7. Streamlines for Kr = 10−3, σf = 1, β = 1, H = 10−2,
γ = 10−2: f -phase (up), p-phase (bottom)
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(a) Ra = 102
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(b) Ra = 103
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Figure 8. Isotherms for Kr = 10−3, σf = 1, β = 1, H = 10−2,
γ = 10−2: f -phase (up), p-phase (bottom)
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[6] Cătinaş, T., Extension of some generalized Hermite-type interpolation operators to the
triangle with one curved side, Numer. Funct. Anal. Optim., 40(2019), 1939-1963.

[7] Chiorean, I., Cătinaş, T., Tr̂ımbiţaş, R., Numerical Analysis, Cluj University Press,
Cluj-Napoca, 2010.

[8] Gentile, M., Straughan, B., Bidispersive thermal convection with relatively large macro-
pores, J. Fluid Mech., 898(2020), A14-1.

[9] Gross, R., Bear, M.R., Hickox, C.E., The application of flux-corrected transport (FCT)
to high Rayleigh number natural convection in a porous medium, In: Proceedings of the
7th International Heat Transfer Conference, San Francisco, CA, 1986.



Free convection in bidisperse porous medium 903

[10] Ingham, D.B., Pop, I. (Eds.), Transport Phenomena in Porous Media, vol. III, Elsevier,
Oxford, 2005.

[11] Manole, D.M., Lage, J.L., Numerical benchmark results for natural convection in a
porous medium cavity, Heat Mass Transf. Porous Media ASME Conf., 105(1992), 44-
59.

[12] Micula, S., Pop, I., Numerical results for the classical free convection flow problem in a
square porous cavity using spline functions, Int. J. Numer. Methods Heat Fluid Flow,
31(2021), no. 3, 753-765.

[13] Moya, S.L., Ramos, E., Sen, M., Numerical study of natural convection in a tilted rect-
angular porous material, Int. J. Heat Mass Transfer, 30(1987), 630-645.

[14] Nield, D.A., Bejan, A., Convection on Porous Media (Fifth Edition), Springer, New-
York, 2017.

[15] Nield, D.A., Kuznetsov, A.V., Heat transfer in bidisperse porous media, in: D.B. Ingham,
I. Pop (Eds.), Transport in Porous Media, vol. III, Elsevier, Oxford, 2005, 34-59.

[16] Nield, D.A., Kuznetsov, A.V., Natural convection about a vertical plate embedded in a
bidisperse porous medium, Int. J. Heat Mass Transfer, 51(2008), 1658-1664.

[17] Rees, D.A.S., Nield, D.A., Kuznetsov, A.V., Vertical free convective boudary-layer flow
in a bidisperse porous medium, ASME J. Heat Transfer, 130(2008), 1-9.
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Stud. Univ. Babeş-Bolyai Math. 67(2022), No. 4, 905–908

Book reviews

Alexey R. Alimov and Igor’ G. Tsar’kov, Geometric approximation theory,
Springer Monographs in Mathematics. Cham: Springer 2022, xxi+508 p.
ISBN: 978-3-030-90950-5/hbk; 978-3-030-90953-6/pbk; 978-3-030-90951-2/ebook).

The origins of abstract approximation theory can be traced back to the years 50s
of the 19th century when P.L. Chebyshev considered the problem of uniform approx-
imation of continuous functions by polynomials in connection with some technical
problems (the construction of some mechanisms as ”parallelograms” which transform
a circular motion into a rectilinear one, devices used for steam engines). This proves
that approximation theory had, and still have, important applications in various sci-
entific and technical domains. Since then the domain developed in many directions
by the contributions of many mathematicians and applied scientists.

The present book contains an encyclopedic presentations of a lot of topics in
approximation theory in concrete as well as in general Banach spaces, starting with
some classical and ending with some very recent results. The first chapter contains
some preliminaries. Some classical results on best approximation in the space C[a, b]
are presented in the second chapter, including Chebyshev alternation theorem, de la
Vallée Poussin and Haar theorems and Mairhuber theorem (the space C(Q) contains
a Chebyshev subspace of dimension n ≥ 2 only if Q is homeomorphic to a subset of
the unit circle). Applications are given to Remez’s algorithm. Best approximation by
rational functions in C[a, b] and in Lp is treated in the 11th chapter.

Chapter 3, Best approximation in Euclidean spaces (meaning inner product
spaces) contains Kolmogorov criterion on the characterization of best approximation
elements and Phelps theorem on the convexity of sets with Lipschitz metric pro-
jection. The 4th chapter is dedicated to some notions (approximative compactness,
bounded compactness as well as their generalizations, done by Blatter, to a regular
mode of convergence) that are very efficient tools in proving existence results in best
approximation.

The fifths chapter is concerned with solarity properties of sets and their role in
the characterization of best approximation elements, continuity and differentiability
properties of the metric projection. Notice that solarity is a recurrent topic of the book.
Various types of suns and the relations between them are considered in Chapter 10,
Solarity of Chebyshev sets, including recent important contributions of the authors.

An old and still unsolved problem in best approximation is that of the con-
vexity of Chebyshev sets – is any Chebyshev subset of a Hilbert space convex? In
Chapter 5, Convexity of Chebyshev sets and suns, the authors present five proofs (of
Berdyshev-Klee-Vlasov, Asplund, Konyagin, Vlasov and Brosowski) on the convexity
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of Chebyshev sets in Rn. Johnson’s counterexample of a nonconvex Chebyshev set in
an incomplete inner product space and a presentation of Klee caverns are included as
well. Other counterexamples (Dunham’s example of a Chebyshev set with an isolated
point, Klee’s example of a discrete Chebyshev set and Koshcheev example of a dis-
connected sun) are given in Chapter 7, Connectedness and approximative properties
of sets.

Chapter 8 is concerned with the existence of Chebyshev subspaces in finite and
infinite dimensional spaces, with emphasis on the space L1(µ). The influence of some
geometric properties of Banach spaces (Efimov-Stechkin property, uniform convexity
and uniform smoothness) on the approximative properties of their subset is discussed
in the 9th chapter.

Chapter 13, Approximation of vector-valued functions, contains some results of
Zukhovickii, Stechkin, Tsar’kov, Garkavi, Koshcheev, a.o., on the extension of the
results on best approximation in spaces of real-valued functions (characterization,
Haar condition, Chebyshev systems, etc) to the case of the space C(Q,X), where Q
is a compact Hausdorff topological space and X a Banach space.

Chapter 14 is devoted to a detailed study of Jung constant defined as the radius
of the smallest ball covering any set of diameter 1. This is a very important tool in the
geometry of Banach spaces with applications to best approximation and to fixed point
theory for nonexpansive mappings (the inverse of Jung constant is called the coeffi-
cient of normality of the corresponding Banach space) and for condensing mappings.
Chapter 15 contains a detailed study of Chebyshev centers, a notion related to best
approximation (simultaneous approximation) and having important practical appli-
cations as, for instance, to optimal location problem. One studies the existence and
uniqueness of Chebyshev centers, continuity, stability and selections for the Cheby-
shev center map, algorithms for finding Chebyshev centers and applications.

Chapter 16 is concerned with several kinds of widths (Kolmogorov, Alexandrov,
Fourier, Bernstein) which are strongly related to approximation theory, allowing to
compare the efficiency of the approximation by various classes of approximating sets
(algebraic or trigonometric polynomials, rational functions, etc).

The last chapter, Chapter 17, Approximation properties of arbitrary sets in lin-
ear normed spaces. Almost Chebyshev sets and sets of almost uniqueness, is concerned
with genericity properties (in the sense of Baire category) and porosity results in best
approximation problems and in the study of farthest points (existence and unique-
ness), a direction of research initiated by S. B. Stechkin in 1963.

The book contains also three appendices: A. Chebyshev systems of functions in
the spaces C,Cn and Lp, B. Radon, Helly and Carathódory theorems. Decomposi-
tion theorem, and C. Some open problems. Some open problems are also formulated
throughout the main text.

The bibliography counts 632 items.

Written by two experts with substantial contributions to the domain, this book
incorporates a lot of results, both classical but also new ones situated in the focus of
current research (including authors’ results). It can be warmly recommended to a large
community of mathematicians interested in best approximation and its relations to
Banach space geometry, but it can also be used for graduate courses in approximation
theory.
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Notice that a two volume preliminary version of the book was published in
Russian (Ontoprint, Moskva, 2017 and 2018), but the present one is entirely rewritten,
updated and enlarged. (A review of the Russian edition was published in Stud. Univ.
Babeş-Bolyai, Mathematica 63 (2018), no. 4.).

S. Cobzaş

Saeed Zakeri, A Course in Complex Analysis, Princeton University Press, 2021,
xii+428 pages, hardback, ISBN: 9780691207582, ebook, ISBN: 9780691218502.

The book under review is an excellent introduction to Complex Analysis.
The author managed to put together in a harmonious way a large variety of

classical results of the theory. Here is a list with the most important topics and
results with complete self-contained proofs in the book: the Cauchy-Riemann equa-
tions, Cauchy’s theorems and their homology versions, Liouville’s theorem and its
hyperbolic version, the identity theorem, the open mapping theorem, the maximum
principle for holomorphic and harmonic functions, the residue theorem, the argument
principle, Möbius maps and their dynamics, conformal metrics, the Schwarz-Pick
lemma and Ahlfor’s generalization, Montel’s theorem and its generalization, the con-
vergence results of Weierstrass, Hurwitz and Vitali, Marty’s theorem, the Riemann
mapping theorem, Koebe’s distorsion bounds for the class of schlicht functions, the
Carathéodory extension theorem, the solution of the Dirichlet problem on the disk
with the Poisson kernel, the Fatou theorem, harmonic measures and Blaschke prod-
ucts, Weierstrass’ factorization theorem, Jensen’s formula, Mittag-Leffler’s theorem,
elliptic functions, Runge’s theorem, Schönflies’ theorem, conformal models of finitely
connected domains, natural boundaries, Ostrowski’s theorem, the monodromy the-
orem, the Schwarz reflection principle for analytic arcs, the Hausdorff measure and
holomorphic removability, the Schwarz-Christoffel formula, Bloch’s theorem, Schot-
tky’s theorem, Picard’s theorems, Zalcman’s rescaling theorem, branched coverings,
the Riemann-Hurwitz formula, the modular group, the uniformization theorem for
spherical domains, the characterization of hyperbolic domains, holomorphic covering
maps of topological annuli.

Each chapter ends with a generous list of problems. Even though the book
doesn’t include the solutions, the problems have short solutions and are not too hard,
but sufficiently challenging to motivate the reader to go again through the theory,
and thus to understand better the key ideas of each chapter.

All the arguments are very rigorous and presented in depth, without burdening
the reader with unnecessary details. The exposition is clear and intuitive with lots
of suggestive examples. Moreover, the coloring of the definitions and the beautiful
pictures make the study of the book a pleasant experience. Some pictures are so well
designed that they represent proofs without words (a nice example is the picture that
illustrates the jumping principle for the winding number). Furthermore, the historical
marginal notes and the pictures of the mathematicians that obtained the results are
very welcome.

As a minor drawback, we believe that the section dedicated to the covering
properties of the exponential map is superfluous, taking into account the section
about covering spaces, because the ideas in the particular case are pretty much the
same as in the general setting.
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The book is dedicated to graduate students and advanced undergraduate stu-
dents. The main prerequisite is a basic background knowledge of Real Analysis, Topol-
ogy and Measure Theory. In order to truly appreciate the geometric viewpoint and
to enjoy the intuition behind some analytic results, we believe the reader should have
some knowledge of Differential Geometry of curves and surfaces (in particular, tangent
vectors, curvature of curves/surfaces, conformal maps and geodesics).

We encourage the reader to take a look also at the website of the book, where
the author provides, for each chapter, additional comments, explanations, problems
and an errata: http://qcpages.qc.cuny.edu/ zakeri/CAbook/ACCA.html

Mihai Iancu

Shahriar Shahriari, An Invitation to Combinatorics, Cambridge Mathematical Text-
books, xv + 613 p. 2022. ISBN 978-1-108-47654-6/hbk; 978-1-108-56870-8/ebook.

Combinatorics is a branch of mathematics that deals with counting problems and
some other related concepts. Knowledge of the basic principles of combinatorics could
greatly simplify the task of counting. The present book attempts at an accessible,
amicable and conversational exposition of the art and the science of counting.

The first three chapters, 1. Induction and recurrence relations, 2. The Pigeonhole
Principle and Ramsey Theory, and 3. Counting, probability, balls and boxes, are con-
cerned with the foundational or fundamental concepts of combinatorics. These include
induction, recurrence relations, the pigeonhole principle, multisets, graphs, Ramsey
theory, Schur, Van der Waerden and graph Ramsey numbers, besides the fundamental
principles of counting, such as the addition principle and the multiplication principle.

The next four chapters, 4. Permutations and combinations, 5. Binomial and
multinomial coefficients, 6. Stirling numbers, and 7. Integer partitions, capitalize on
the foundational concepts and introduce various techniques and special kinds of num-
bers that simplify the task of counting. These include permutations, falling factori-
als, combinations, binomial coefficients, lattice paths, Ming-Catalan numbers, Stirling
numbers (both of the first and of the second kind), partitions of integers and pentag-
onal number theorem.

The last four chapters, 8. The Inclusion-Exclusion Principle, 9. Generating func-
tions, 10. Graph theory, and 11. Posets, matchings, and Boolean lattices, are concerned
with some advanced combinatorics concepts such as the inclusion-exclusion principle,
combinations of multisets, restricted permutations, generating functions, basics of
graph theory, posets (partially ordered sets), total orders and the matching problem.

The book also contains ten collaborative mini-projects meant for groups of three
or four students to work and explore things collaboratively. There is a great emphasis
on problem-solving and guided discovery.

The book has been written in a conversational style making it both accessible
and engaging for the readers. The book is an excellent invitation to the world of
combinatorial thinking.

Firdous Ahmad Mala1

1Government Degree College, Sopore, India, and Chandigarh University, Punjab India;
firdousmala@gmail.com
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